Answer:
The student knows that a chemical reaction has occurred because Liquids 3 and 4 have different properties than Liquids 1 and 2.
Explanation:
Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
R 1,2 = 27.5 + 33.0 = 60.5 Ohms
1/ R 1,2,3 = 1/ 60.5 + 1 / 22 = 82.5 / 1331
R 1, 2, 3 = 1331 / 82.5 = 16.13 Ohms
I = U / R
I = 9 V / 16.13 Ohms = 0.557 A ≈ 0.56 A
Answer: C ) 0.56 Amps
Answer:
De Broglie wavelength of the bullet is given as

Explanation:
As per De Broglie hypothesis we know that the wavelength of De Broglie waves is the ratio of Plank's constant and momentum of the particle
here we know that the bullet mass is
m = 0.075 kg
speed of the bullet is given as
v = 350 m/s
Now we have


Now we know that



Answer:
They hit at the same time
Explanation:
The bullet that is fired horizontally, the horizontal component of the speed is the speed with which is its is fired and the vertical component of the speed comes in picture due to gravity only.
When the bullet is dropped from the same height, the horizontal component is zero but the vertical component arises from the gravity.
The vertical components of the velocity of both the bullets are same and thus, they fall at the same time.
<u>Answer: They hit at the same time</u>