Explanation :
In the given case different law related to gas is given. The attached figure shows the required solution.
Boyle's law states that the pressure is inversely proportional to the volume of the gas i.e.


k is a constant.
Charle's law states that the volume of directly proportional to the temperature of the gas.


Combined gas law is the combination of the pressure, volume and the temperature of the gas i.e.

Hence, this is the required solution.
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)</span>
1540 = 200.0 (C)(40 - 20)
<span>
<span>C = 0.385 J / g C</span></span>
<span><span>
</span></span>
<span><span>Hope this answers the question. Have a nice day.</span></span>
Answer:
The plane with aluminium can lift more mass of passangers than the plane of steel.
Explanation:
The total mass the airplane canc lift is:

For aluminium:


and
![V_{fuselage}=\frac{\pi *L}{4}*[D^2-(D-e)^2]](https://tex.z-dn.net/?f=V_%7Bfuselage%7D%3D%5Cfrac%7B%5Cpi%20%2AL%7D%7B4%7D%2A%5BD%5E2-%28D-e%29%5E2%5D)
where:
- L is lenght
- D is diameter
- e is thickness
![m_{tot}=\delta _{Al}*\frac{\pi *L}{4}*[D^2-(D-e)^2]+m_{pas-Al}](https://tex.z-dn.net/?f=m_%7Btot%7D%3D%5Cdelta%20_%7BAl%7D%2A%5Cfrac%7B%5Cpi%20%2AL%7D%7B4%7D%2A%5BD%5E2-%28D-e%29%5E2%5D%2Bm_%7Bpas-Al%7D)
For steel (same procedure):
![m_{tot}=\delta _{Steel}*\frac{\pi *L}{4}*[D^2-(D-e)^2]+m_{pas-Steel](https://tex.z-dn.net/?f=m_%7Btot%7D%3D%5Cdelta%20_%7BSteel%7D%2A%5Cfrac%7B%5Cpi%20%2AL%7D%7B4%7D%2A%5BD%5E2-%28D-e%29%5E2%5D%2Bm_%7Bpas-Steel)
Knowing that the total mass the airplane can lift is constant and that aluminum has a lower density than the steel, we can afirm that the plane with aluminium can lift more mass of passangers.
Also you can estimate an average weight of passanger to estimate a number of passangers it can lift.