Hey there!
The pressure under a liquid column can be , calculated using the following formula :
P = p x g x h
P atm = 1.013 x 10⁵ Pa
g = 9.8 m/s²
h = ?
h = P / ( p x g ) =
h= ( 1.013 x 10⁵ Pa ) / ( 900 x 9.8 ) =
h = ( 1.013 x 10⁵ ) / ( 8820 ) =
h = 11.48 m ≈ 11.50 m
Hope this helps!
The answer is reverse faults.
<span>The key equation is going to come from Mr Planck: E=h \nu
Where h is Plancks constant; and ν is the frequency. This equation gives you the energy per photon at a given frequency. Alas, you're given wavelength, but that's easy enough to convert to frequency given the following equation:
c= lambda / nu
where c is the speed of light; λ (lambda) is the wavelength; and ν is again frequency. As soon as you know the energy of a photon with a wavelength of 550nm, you should know how many photons you would require to accumulate 10^-18J. Be careful with your units.</span>
Answer:
a) t = 1.8 x 10² s
b) t = 54 s
c) t = 49 s
Explanation:
a) The equation for the position of an object moving in a straight line at constan speed is:
x = x0 + v * t
where
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, the origin of our reference system is at the begining of the sidewalk.
a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:
x = x0 + v * t
95 m = 0m + 0. 53 m/s * t
t = 95 m/ 0.53 m/s
t = 1.8 x 10² s
b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)
t = 95 m/ 1.77 m/s = 54 s
c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:
0 m = 95 m -1.95 m/s * t
t = -95 m / -1.95 m/s = 49 s