Answer:
The average magnitude of magnetic field B= 0.0433/ d Tesla
(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)
Explanation:
Induced emf
where B= magnetic field
d= breadth of rectangular piece
V= velocity with which the rectangular piece = o.o6m/s
n= no of turns = 10
EMF = 26mV
since d (breadth of the frame) is not given, I will use it as a variable
EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)
From eq 1, we get
B= (EMF)/(n d V)
B= (26 X 0.001) / (10 d 0.06)
B= 0.0433/ d Tesla
The kinetic energy of a moving object is given by

where m is the object's mass and v its velocity.
In our problem, the initial kinetic energy is:

while the final kinetic energy is:

So, the kinetic energy lost by Lucy and her bike is
Answer: 800N
Explanation:
Given :
Mass of ball =0.8kg
Contact time = 0.05 sec
Final velocity = initial velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is can be calculated using the relation;
Force(F) = mass(m) * average acceleration(a)
a= (initial velocity(u) + final velocity(v))/t
m = 0.8kg
u = v = 25m/s
t = contact time of the ball = 0.05s
Therefore,
a = (25 + 25) ÷ 0.05 = 1000m/s^2
Therefore,
Magnitude of average force (F)
F=ma
m = mass of ball = 0.8
a = 1000m/s^2
F = 0.8 * 1000
F = 800N
It will be <span>Einstein's General Relativity</span>
As he lifts the sack to his chest from the floor