answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
1 year ago
7

"The two equations below express conservation of energy and conservation of mass for water flowing from a circular hole of radiu

s 3 centimeters at the bottom of a cylindrical tank of radius 20 centimeters. In these equations, delta m is the mass that leaves the tank in time delta t, v is the velocity of the water flowing through the hole, and h is the height of the water in the tank at time t. g is the accelertion of gravity, which you should approximate as 1000 cm/s2
The first equation says that the gain in kinetic energy of the water leaving the tank equals the loss in potential energy of the water in the tank.
1/2 delta m v2 = delta m gh
The second equation says that the rate at which water leaves the tank equals the rate of decrease in the volume of water in the tank (which is conservation of mass because water has constant density)
pi 102^2 dh/dt = pi 3^2 v
Derive a differential equation for the height of water in the tank.
If the initial height of the water is 30 centimeters, find a formula or the solution.
According to the model, how long does it take to empty the tank?
Another way to solve this differential equation is to make the substitution w = underroot h. What is the differential equation that w satisfies?
Physics
1 answer:
Leno4ka [110]1 year ago
5 0

Answer:

The two equations below express conservation of energy and conservation of mass for water flowing from a circular hole of radius 3 centimeters at the bottom of a cylindrical tank of radius 10 centimeters. In these equations, delta m is the mass that leaves the tank in time delta t, v is the velocity of the water flowing through the hole, and h is the height of the water in the tank at time t. g is the acceleration of gravity, which you should approximate as 1000 cm/s2.

shdh

You might be interested in
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 6 inches below the
hoa [83]

Answer:

Since the spring mass system will execute simple harmonic motion the position as a function of time can be written asx(t)=Asin(\omega t+\phi)

'A' is the amplitude = 6 inches (given)

\omega =\sqrt{\frac{k}{m}} is the natural frequency of the system

At equilibrium we have

mg=kx\\\\k=\frac{mg}{x}

Applying values we get

k=40 lb/ft

thus natural frequency equals

\omega =\sqrt{\frac{40}{\frac{20}{32}}}\\\\\omega =8s^{-1}

Thus the equation of motion becomes

x(t)=6sin(8t+\phi)

At time t=0 since mass is at it's maximum position thus we have

A=Asin(\omega t+\phi)\\\\\therefore sin(\omega\times 0+\phi)=1\\\\\phi=\frac{\pi}{2}\\\\\therefore x(t)=Asin(\omega t+\frac{\pi}{2})

Thus the position of mass at the given times is as follows

1) at \frac{\pi}{12} x(t)=5.99inches

2) at \frac{\pi}{8} x(t)=5.9909inches

3) at \frac{\pi}{6} x(t)=5.98397inches

4) at \frac{\pi}{4} x(t)=5.9639inches

5) at \frac{9\pi}{32} x(t)=5.954inches

4 0
1 year ago
Suppose that sunlight is incident upon both a pair of reading glasses and a pair of sunglasses. Which pair would you expect to b
Ainat [17]

Answer: the pair of sunglasses

Explanation:

A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.

On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.

Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.

4 0
2 years ago
An electric clock is hanging on a wall. As you are watching the second hand rotate, the clock's battery stops functioning, and t
Setler [38]

Answer:

B. W is positive and a is negative

Explanation:

As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have

initial angular velocity is termed as positive angular velocity

\omega = positive

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed

so we will have

\alpha = negative

so here correct answer is

B. W is positive and a is negative

8 0
2 years ago
Atoms can be "cooled" to incredibly low temperatures by letting them interact with a laser beam. Various novel quantum phenomena
Oksanka [162]

Answer:

the rms speed of cesium atoms that have been cooled to a temperature of 100nK = 0.43cm/s or 0.0043m/s

Explanation:

The concept of root mean square velocity is applied, where the average translational kinetic is related to the actual kinetic energy, the expression for the root mean square is the generated.

The detailed steps and appropriate substitution is as shown in the attachment.

8 0
2 years ago
The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration from gravity being the
Diano4ka-milaya [45]

Answer:

<em>The object could fall from six times the original height and still be safe</em>

Explanation:

<u>Free Falling</u>

When an object is released from rest in free air (no friction), the motion is completely dependant on the acceleration of gravity g.

If we drop an object of mass m near the Earth surface from a height h, it has initial mechanical energy of

U=m.g.h

When the object strikes the ground, all the mechanical energy (only potential energy) becomes into kinetic energy

\displaystyle K=\frac{1}{2}m.v^2

Where v is the speed just before hitting the ground

If we know the speed v is safe for the integrity of the object, then we can know the height it was dropped from

\displaystyle m.g.h=\frac{1}{2}m.v^2

Solving for h

\displaystyle h=\frac{m.v^2}{2mg}=\frac{v^2}{2g}

If the drop had occurred in the Moon, then

\displaystyle h_M=\frac{v_M^2}{2g_M}

Where hM, vM and gM are the corresponding parameters on the Moon. We know v is the safe hitting speed and the gravitational acceleration on the Moon is g_M=1/6 g

\displaystyle h_M=\frac{v^2}{2\frac{1}{6}g}

\displaystyle h_M=6\frac{v^2}{2g}=6h

This means the object could fall from six times the original height and still be safe

6 0
2 years ago
Other questions:
  • A Styrofoam slab has thickness h and density ρs. When a swimmer of mass m is resting on it, the slab floats in fresh water with
    5·1 answer
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • A flashlight beam makes an angle of 60 degrees with the surface of the water before it enters the water. in the water what angle
    11·1 answer
  • (a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500 - μC charge and flies due west at a sp
    6·1 answer
  • A horizontal uniform meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30
    8·2 answers
  • Suppose that an owner of the same dog breed has also taken some measurements. They notice that the surface area of the dog has i
    8·1 answer
  • The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
    6·1 answer
  • A rope exerts a force F on a 20.0-kg crate. The crate starts from rest and accelerates upward at 5.00 m/s2 near the surface of t
    9·1 answer
  • Lizette works in her school’s vegetable garden. Every Tuesday, she pulls weeds for 15 minutes. Weeding seems like a never-ending
    15·2 answers
  • As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!