Answer:Temperature increases
Explanation: As the gas in the container is an ideal gas so it should follow the ideal gas equation, the equation of state.
We know ideal gas equation to be PV=nRT where
P=pressure
V=Volume
T=Temperature
R=Real gas constant
n=Number of moles
since the gas is insulated such that no heat goes into or out of the system .
When we compress the ideal gas using a piston, Thermodynamically it means that work is done on the system by the surroundings.
Now as the ideal gas is been compressed so the volume of the gas would decrease and slowly a time will reach when no more gas can be compressed that is there cannot be any further decrease in volume of the gas.
From the equation PV=nRT
Once there is no further compression is possible hence volume becomes constant so pressure of the ideal gas becomes directly proportional to the temperature as n and R are constants. Also as the pressure and volume are inversely related so an decrease in volume would lead to an increase in pressure.
As the ideal gas is compressed so the pressure of the gas would increase since the gas molecules have smaller volume available after compression hence the gas molecules would quite frequently have collisions with other gas molecules or piston and this collision would lead to increase in speed of the gas molecules and so the pressure would increase .
The increase in pressure would lead to an increase in temperature as show by the above ideal gas equation because the pressure and temperature are directly related.
So here we can say that work done on the system by surroundings leads to increase in temperature of the system.
According to molecular orbital theory, atomic orbitals combine to form molecular orbital. Number of molecular orbitals are equal to number of atomic orbitals. Further, of the total number of molecular orbitals, half are called as bonding molecular orbital while remaining are anti-bonding molecular orbital. In case, if system contains lone pair of electrons, they occupy non-bonding molecular orbital. Highest occupied molecular energy levels are referred as HOMO, while lowest unoccupied molecular energy levels are referred as LUMO.
In case of B2 molecule, two B atoms combines to generate molecular orbitals. Attached is the MOT diagram of B2 molecule
From the attached figure, it is clearly evitable that high occupied energy level in B2 is π. Also, it must be noted both <span>pi molecular orbitals i.e. Pi 2Px and Pi 2Py at highest energy level (occupied).</span>
Answer:
Parasitisme.
Explanation:
ini berkaitan dengan Biology bukan Chemistry. Parasitisme bermaksud satu organisma yang berinteraksi dengan organisma lain dan mendapat keuntungan manakala organisma yang terlibat dengan interaksi tersebut mendapat keburukannya.
1.85 quarts can fit into a 1.75 liter bottle
A net worth: $79.0 billion.
Value of stock : $3.20 billion.
New net worth:
$79.0 + $3.20 = $82.20 billion = $82.20 * 10^9 = $8.20 * 10^10