Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant
Answer: the speed at which it falls toward the Earth.
Explanation:
A bullet travelling across Earth's surface with some horizontal velocity is classical example of projectile motion.
Projectile motion is an idealization of the motion under the action of gravity neglecting the influence of the air (no drag force nor friction).
This kind of motion is the result of two independent motions: vertical motion and horizontal motion.
The observed net velocity is the vectorial sum of the vertical and horizontal velocities.
The horizontal velocity is constant, since there is not any force acting in the horizontal axis. Thi is, the object, following the first Law of Newton (inertia law) tends to continue in uniform rectilinear movement (with zero acceleration).
The vertical velocity, this is the velocity at which the bullet falls toward the Earth, is influenced (accelerated) by the action of the gravity of the Earth. So, the vertical velocity is accelerated by the pull of the Earth.
Vertical and horizontal velocities are independent of each other, which means that the speed or the magnitude of the horizontal velocity does not affect the speed at which an object (the bullet) falls toward the Earth.
Answer:
Magnification, m = 3
Explanation:
It is given that,
Focal length of the lens, f = 15 cm
Object distance, u = -10 cm
Lens formula :

v is image distance

Magnification,

So, the magnification of the lens is 3.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
a. <span>FM GmMmr2
</span>= 6.67 x 10-11N.m2kg27 .35 x 1022 kg 70 kg 3.78 x 108 m2
<span>= 2.40 x 10-3 N
b. </span><span>FE GmEmr2
= 6.67 x 10-11 N.m2kg 25 .97 x 1034 kg (70kg) 6.38 x 106 m2
=685 N
FMFE 2.40 x 10-3N685 N= 0.0004%</span>