<span>when it comes to adding or subtracting numbers, his final answer should have the same number of decimal places as the least precise value.
For example if you add 2 numbers; 10.443 + 3.5 , 10.443 has 3 decimal places and 3.5 has only one decimal place.
Therefore 3.5 is the less precise value.
So when adding these 2 values the final answer should have only one decimal place.
after adding we get 13.943 but it can have upto one decimal place. then the second decimal place is less than 5 so the answer should be rounded off to 13.9.
the answer is the same number of decimal places as the least precise value</span>
Answer:
a) The structure of anthracene is planar with all the pi electrons delocalized in the structure to maintain aromaticity.
b) The C-C bond length in anthracene is about 140 pm with all the bond lengths being similar to each other.
The standard C-C bond length is 154 pm while standard C=C bond is about 134 pm. Therefore the bond length in anthracene is smaller than standard C-C bond length and longer than standard C=C bond length. This can be explained from the fact that the C-C bonds in anthracene has be mixed characteristics of single and double bond because of the delocalization of pi electrons over the whole structure. As a result, they are neither fully single nor fully double bond in nature. Hence the observed bond lengths.
c) This molecule is not flat. The N-atom is sp3 hybridized here and the H-atom attached to N will remain out of plane.
Explanation:
First, let us find the corresponding amount of moles H₂ assuming ideal gas behavior.
PV = nRT
Solving for n,
n = PV/RT
n = (6.46 atm)(0.579 L)/(0.0821 L-atm/mol-K)(45 + 273 K)
n = 0.143 mol H₂
The stoichiometric calculations is as follows (MW for XeF₆ = 245.28 g/mol)
Mass XeF₆ = (0.143 mol H₂)(1 mol XeF₆/3 mol H₂)(245.28 g/mol) = <em>11.69 g</em>
(29.8 g) / [0.184 mol (44.00964 g CO2/mol)] =0.832= 83.2% yield CO2
(hope this helps)