answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
2 years ago
6

Shown is a top view of a 50-kg person walking on a large horizontal disk, which rotates with constant angular velocity ω0 = 0.3

rad/s. He walks at a constant speed v0 = 5 m/s along a straight line painted on the disk. What is the magnitude of the horizontal force exerted on him by the disk when he is 6 m from the center of the disk? A person is shown walking from the center of a disk.
Physics
1 answer:
JulijaS [17]2 years ago
6 0
We are given
m = 50 kg
<span>ω0 = 0.3 rad/s
</span><span>v0 = 5 m/s
r = 6 m

We are asked for the horizontal force.
Doing a force balance:
Fc = Fh
m</span>ω²r = <span>Fh</span>
<span>Substituting
Fh = 50 kg (0.3 rad/s) (6 m)
Fh = 90 N</span><span />
You might be interested in
A sample of a gas occupies a volume of 90 mL at 298 K and a pressure of 702 mm Hg. What is the correct expression for calculatin
aleksandr82 [10.1K]

Answer:

Explanation:

Given

volume of sample V_1=90\ mL

Temperature T_1=298\ K

Pressure P_1=702\ mm\ of\ Hg

for different conditions

Temperature T_2=273\ K

Pressure P_2=760\ mm\ of\ Hg

suppose V_2 is the volume of sample

Using ideal gas equation

PV=nRT

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

\frac{702\times 90}{298}=\frac{760\times V_2}{273}

V_2=76.15\ mL

             

8 0
2 years ago
A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the c
butalik [34]

Answer:

The temperature of the gas is 1197.02 K

Explanation:

From ideal gas law;

PV = nRT

Where;

P is the pressure of the gas

V is the volume of the gas

R is ideal gas constant = 8.314 L.kPa/mol.K

T is the temperature of the gas

n is the number of moles of gas

Volume of the gas in the cylindrical container = πr²h

Given;

r = 6/2 = 3 cm = 0.03 m

h = 11 cm = 0.11 m

V = π × (0.03)² × 0.11 = 3.11 × 10⁻⁴ m³ = 0.311 L

number of moles of oxygen gas = Reacting mass / molar mass

=\frac{0.1}{32} = 0.003125, moles

T = \frac{PV}{nR} = \frac{100X0.311}{0.003125X8.314} =1197.02K

Therefore, the temperature of the gas is 1197.02 K

6 0
2 years ago
A carbon-dioxide laser emits infrared light with a wavelength of 10.6 μm. What is the length of a tube that will oscillate in th
alex41 [277]

Answer:

The length of a tube and number of rounds are 0.848 m and 1.77\times10^{8}\ trip\ per\ second.

Explanation:

Given that,

Wavelength \lambda= 10.6\mu m

m = 160000

We need to calculate the length

Using formula of wavelength

Laser tube behave like closed pipe

m\dfrac{\lambda}{2}=L

L=160000\times\dfrac{10.6\times10^{-6}}{2}

L=0.848\ m

Distance traveled by pulse of light in one back and fourth trip

d=2L

d=2\times0.848

d=1.696\ m

We need to calculate the time

Using formula for time

t = \dfrac{d}{c}

t=\dfrac{1.696}{3\times10^{8}}

t=5.653\times10^{-9}\ s

We need to calculate the number of round

Using formula of number of round

N=\dfrac{1}{t}

N= \dfrac{1}{5.653\times10^{-9}}

N=1.77\times10^{8}\ trip\ per\ second

Hence, The length of a tube and number of rounds are 0.848 m and 1.77\times10^{8}\ trip\ per\ second.

7 0
2 years ago
: The truck is to be towed using two ropes. Determine the magnitudes of forces FA and FB acting on each rope in order to develop
Sholpan [36]

Answer:

Fa=774 N

Fb=346 N

Explanation:

We will solve this problem by equating forces on each axis.

  1. On x-axis let forces in positive x-direction be positive and forces in negative x-direction be negative
  2. On y-axis let forces in positive y-direction be positive and forces in negative y-direction be negative

While towing we know that car is mot moving in y-direction so net force in y-axis must be zero

⇒∑Fy=0

⇒Fa*sin(50)-Fb*sin(20)=0

⇒Fa*sin(50)=Fb*sin(20)

⇒Fa=2.24Fb

Given that resultant force on car is 950N in positive x-direction

⇒∑Fx=950  

⇒Fa*cos(20)+Fb*cos(50)=950

⇒2.24*Fb*cos(20)+Fb(50)=950

⇒Fb*(2.24*cos(20)+cos(50))=950

⇒Fb=\frac{950}{2.24*cos(20)+cos(50)}

⇒Fb=\frac{950}{2.24*0.94+0.64}

⇒ Fb=\frac{950}{2.75}=345.5

⇒Fa=2.24*Fb

      =2.24*345.5

      =773.93

Therefore approximately, Fa=774 N and Fb=346 N

5 0
2 years ago
Joel uses a claw hammer to remove a nail from a wall. He applies a force of 40 newtons on the hammer. The hammer applies a force
jarptica [38.1K]

Hi!


Mechanical advantage is defined as the<em> ratio of force produced by an object to the force that is applied to it.</em>

In our case, this would be the ratio of the force applied by the claw hammer on the nail to the force Joel applies to the claw hammer, which is

160:40 or 4:1

So the mechanical advantage of the hammer is four.


Hope this helps!


3 0
2 years ago
Read 2 more answers
Other questions:
  • Which formulas show the relationships between momentum, mass, and velocity? Check all that apply.
    6·2 answers
  • A cue ball has a mass of 0.5 kg. During a game of pool, the cue ball is struck and now has a velocity of 3 . When it strikes a s
    13·2 answers
  • A 1 530-kg automobile has a wheel base (the distance between the axles) of 2.70 m. The automobile's center of mass is on the cen
    13·1 answer
  • Energy is observed in two basic forms: potential and kinetic. Which of the following correctly matches these forms with a source
    7·1 answer
  • In which case does viscosity play a dominant role? Case A: a typical bacterium (size ~ 1 mm1 mm and velocity ~ 20 mm/s20 mm/s) i
    13·1 answer
  • Whennes
    15·1 answer
  • A 48.0-kg astronaut is in space, far from any objects that would exert a significant gravitational force on him. He would like t
    9·1 answer
  • Suppose Mitch Marner (mass=80kg) and Zdano Chara (mass=116kg) collide head-on at the blue line when Marner is skating 10m/s and
    8·1 answer
  • An object begins at position x = 0 and moves one-dimensionally along the x-axis witļi a velocity v
    5·1 answer
  • An astronaut stands on the surface of an asteroid. The astronaut then jumps such that the astronaut is no longer in contact with
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!