Answer:
Explanation:
Impulse = change in momentum
mv - mu , v and u are final and initial velocity during impact at surface
For downward motion of baseball
v² = u² + 2gh₁
= 2 x 9.8 x 2.25
v = 6.64 m / s
It becomes initial velocity during impact .
For body going upwards
v² = u² - 2gh₂
u² = 2 x 9.8 x 1.38
u = 5.2 m / s
This becomes final velocity after impact
change in momentum
m ( final velocity - initial velocity )
.49 ( 5.2 - 6.64 )
= .7056 N.s.
Impulse by floor in upward direction
= .7056 N.s
Answer:
14160 kg/m^3
Explanation:
First of all, we need to find the volume of the cylinder.
The volume of the cylinder is given by:

where:
is the radius
is the height
Substituting, we find

And the density is given by

where m = 1 kg is the mass. Substituting, we find

This approach is called the dimensional analysis which involves only the units of measurement without their magnitudes. You simply have to do the operations by using variables. Cancel out like items that may appear both in the numerator and denominator side. The solution is as follows:
F = mv²/r = [kg][m/s]²/[m] = [kg][m²⁻¹][1/s²] = [kg·m/s²]
Answer:
During convection, hot material expands & rises then moves to the side and cools & sinks. this circular pattern is called a convection current.
Explanation:
Convection is one of the three methods of transfer of heat. It occurs only in fluids (liquids or gases).
Convection occurs when there is a source of heat that heats a fluid, such as in a boiling pot of water. The water which is on the bottom of the pot becomes warmer before than the water at the top (because it is closer to the flame), and so it becomes less dense: for this reason, it expands and it becomes rising. On the contrary, the water on top is colder, so it is more dense and starts sinking, replacing the warmer water. As the new part of water gets warmer, it starts rising, and so the process is continuously repeated. This circular current is called convection current.