Answer:
See explanation
Explanation:
Hydrogen has a valency of +1 or -1. Its electronic configuration is 1s1.
The 1s sub-level (first shell) is known to hold two electrons. This means that hydrogen may either loose this one electron in the 1s level to yield H^+ or accept another electron into this 1s level to form H^- (the hydride ion).
The formation of the hydride ion completes the 1s orbital.
The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>
Answer:
-It is considered the modern atomic model.
-It describes the probable locations of the electrons
Explanation:
edge 2020
Answer:- 0.138 M
Solution:- The buffer pH is calculated using Handerson equation:

acts as a weak acid and
as a base which is pretty conjugate base of the weak acid we have.
The acid hase two protons(hydrogen) where as the base has only one proton. So, we could write the equation as:

Phosphoric acid gives protons in three steps. So, the above equation is the second step as the acid has only two protons and the base has one proton.
So, we will use the second pKa value. The acid concentration is given as 0.10 M and we are asked to calculate the concentration of the base to make a buffer of exactly pH 7.00.
Let's plug in the values in the equation:



Taking antilog:


On cross multiply:
[base] = 1.38(0.10)
[base] = 0.138
So, the concentration of the base that is
required to make the buffer is 0.138M.
Explanation:
The dimensions of a standard backpack is 30cm x 30cm x 40cm
The mass of an average student is 70 kg
We know that, the density of gold is 19.3 g/cm³.
Let m be the mass of the backpack. So,

An average student has a mass of 70 kg. If we compare the mass of student and mass of backpack, we find that the backpack is 10 times of the mass of the student.