Answer:
Explanation:
<u>1) Data:</u>
a) n = 2 moles
b) T = 373 K
c) V = 2.5 liter
d) P = ?
<u>2) Chemical principles and formula</u>
You need to calculate the pressure of the propane gas in the mixture before reacting. So, you can apply the partial pressure principle which states that each gas exerts a pressure as if it occupies the entire volume.
Thus, you just have to use the ideal gas equation: PV = nRT
<u>3) Solution:</u>
P = 2 mol × 0.08206 atm-liter /K-mol × 373K / 2.5 liter = 24.5 atm
Since the number of moles are reported with one significant figure, you must round your answer to one significant figure, and that is 20 atm (20 is closer to 24.5 than to 30).
Answer:
Chemists make observations on the macroscopic a scale that lead to conclusions about microscopic features
Explanation:
Many important chemical observations are made on the macroscopic scale. This is because, many of the scientific equipments available are not presently able to provide direct evidence about microscopic processes. Evidences obtained from macroscopic observations could serve as important insights into the nature of certain microscopic processes.
This is evident in the study of the structure of the atom. Most of the evidences that led to the deduction of the atomic structure were obtained from macroscopic evidence but ultimately provided important information about the microscopic structure of the atom.
Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.
The final temperature of the water is the equilibrium temperature, or the also the final temperature of the iron after a long period of time. Applying the conservation of energy:
m,iron*C,iron*ΔT = - m,water*C,water*ΔT
The density of water is 1000 g/mL.
(25 g)(0.449 J/g·°C)(T - 398 K) = - (25 mL)(1000 g/mL)(4.18 J/g·°C)(T - 298)
Solving for T,
<em>T = 298.01 K</em>
Answer:
The equation for the reaction of one sodium bicarbonate ( NaHCO3 ) molecule with one citric acid (C6H8O7) molecule is the following:
Sodium Bicarbonate + Citric Acid ⇒ Water + Carbon Dioxide + Sodium Citrate
NaHCO3 + C6H8O7 ⇒ 3 CO2 + 3 H2O + Na3C6H5O7
Explanation:
The reaction is in balance, that is, the whole H2CO3 is not finished, but a little bit of this acid is left in the solution. Therefore, when sodium bicarbonate is added to the solution with citric acid, sodium citrate salt (C6H5O7Na3) and carbonic acid (H2CO3) are formed, which is rapidly broken down into water (H2O) and carbonic oxide (CO2).
C6H8O7 + NaHCO3 ⇒ C6H5O7Na3 + 3 H2CO3
C6H5O7Na3 + 3 H2CO3 ⇔ C6H5O7Na3 + 3 H2O + 3 CO2