answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
2 years ago
11

The sun radiates most strongly at a wavelength of about 550 nm. a star that radiated most strongly at 400 nm would be

Physics
1 answer:
OLEGan [10]2 years ago
5 0
550 nm is in the visible spectrum. 400 nm is in the ultra-violet spectrum.  The shorter the wavelength, the bigger the energy of the light photon emitted. Therefore a star that emits 400 nm photons, is hotter than the Sun. A star that is hotter is either bigger than the Sun (and has about the same age), either younger than the Sun (and has about the same dimension). 
Therefore a star that radiates at 400 nm would be hotter, bigger and younger than the Sun.  
You might be interested in
A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
mart [117]

Explanation:

It is given that,

The horizontal speed of a cliff diver, v_x=3.6\ m/s

It reaches the water below 2.00 s later, t = 2 s

Let d_x is the distance where the diver hit the water. It can be calculated as follows :

d_x=v_x\times t\\\\=3.6\times 2\\\\=7.2\ m

Let d_y is the height of the cliff. It can be calculated using second equation of motion as follows :

d_y=u_yt+\dfrac{1}{2}gt^2\\\\d_y=\dfrac{1}{2}\times 9.8\times 2^2\\\\=19.6\ m

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.

8 0
1 year ago
The drawing shows a hydraulic chamber with a spring (spring constant = 1600 N/m) attached to the input piston and a rock of mass
Triss [41]

Answer:

\Delta x=245\ mm

Explanation:

Given:

  • spring constant of the spring attached to the input piston, k=1600\ N.m^{-1}
  • mass subjected to the output plunger, m=40\ kg

<u>Now, the force due to the mass:</u>

F=m.g

F=40\times 9.8

F=392\ N

<u>Compression in Spring:</u>

\Delta x=\frac{F}{k}

\Delta x=\frac{392}{1600}

\Delta x=0.245\ m

or

\Delta x=245\ mm

8 0
2 years ago
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
2 years ago
A 4kg bird has 8 joules of kinetic energy, how fast is it flying?
Igoryamba
I believe the answer is 2m/s
7 0
2 years ago
Read 2 more answers
Suppose that a rectangular toroid has 2,000 windings and a self-inductance of 0.060 H. If the height of the rectangular toroid i
andrey2020 [161]

Answer:

0.01154 A

Explanation:

We have given the energy in the magnetic field U=4\times 10^{-6}J

Value of inductance L =0.060 H

Energy stored in magnetic field is given by U=\frac{1}{2}Li^2

i=\sqrt{\frac{2U}{L}}

i=\sqrt{\frac{2\times 4\times 10^{-6}}{0.06}}=0.01154\ A

So the current flowing through rectangular toroid will be 0.01154 A

3 0
2 years ago
Other questions:
  • Waves hitting at an angle and then bending around features of the coast is known as
    8·1 answer
  • Charina says that when waves interact with an object, they will interfere with the object, and that when waves interact with oth
    13·2 answers
  • A place kicker applies an average force of 2400 N to a football of .040 kg. The force is applied at an angle of 20.0 degrees fro
    10·1 answer
  • At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
    12·1 answer
  • A motorcycle is travelling at a constant velocity of 30ms. The motor is in high gear and emits a hum of 700Hz. The speed of soun
    15·1 answer
  • An unstable nucleus which has a tendency to spontaneously change its form with the emission of high-energy particles or photons
    6·2 answers
  • Suppose we were to attempt to use a similar machine to measure the charge-to-mass ratio of protons, instead. Suppose, for simpli
    9·1 answer
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
  • Pamela has three computers, all of
    6·2 answers
  • A screw-jack used to lift a bus is a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!