answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
1 year ago
12

A 60.2-ml sample of hg (density = 13.6 g/ml) contains how many atoms of hg?

Chemistry
1 answer:
Over [174]1 year ago
6 0
Density is calculated using the following rule:
density = mass / volume
therefore:
mass = density * volume
mass of Hg = 13.6 * 60.2 = 818.72 grams

From the periodic table:
molar mass of Hg = 200.59 grams

number of moles = mass / molar mass
number of moles of Hg = 818.72 / 200.59 = 4.08 moles

each mole contains Avogadro's number of atoms.
Therefore,
number of atoms in the given sample = 4.08 * 6.022 * 10^23
                                                            = 2.456976 * 10^24 atoms
You might be interested in
Use average bond energies to calculate ΔHrxn for the following hydrogenation reaction: H2C=CH2(g)+H2(g)→H3C−CH3(g)
marissa [1.9K]

Answer:

The\Delta H_{rxn} of the given reaction is -129.6 kJ

Explanation:

The given chemical reaction is as follows.

H_{2}C=CH_{2}(g)+H_{2}(g)\rightarrow H_{3}C-CH_{3}(g)

Enthalpy of each reactant and products are as follows.

\Delta H_{C=C}\,=615.0\,kJ\,mol^{-1}

\Delta H _{H-H}\,=435.1\,kJ\,mol^{-1}

\Delta H _{C-C}\,=347.3\,kJ\,mol^{-1}

\Delta H _{C-H}\,=416.2\,kJ\,mol^{-1}

In the given chemical reaction involved two C-H bonds in the reactant side and one C-C bond in the product side therefore, the enthalpy of formation will be the negative.

\Delta H_{rxn}=-\Delta H_{C-C}-2\Delta H_{C-H}+\Delta H_{C=C}+\Delta H_{H-H}

=-347.4-2\times416.2+615.0+435.1

=-129.6 \,kJ

Therefore, The\Delta H_{rxn} of the given reaction is -129.6 kJ

4 0
1 year ago
Calculate the radius ratio for NaBr if the ionic radii of Na + and Br − are 102 pm and 196 pm , respectively. radius ratio: Base
Fudgin [204]

Answer : The expected coordination number of NaBr is, 6.

Explanation :

Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.

This is represented by,

\frac{r_{cation}}{r_{anion}}

When the radius ratio is greater than 0.155, then the compound will be stable.

Now we have to determine the radius ration for NaBr.

Given:

Radius of cation, Na^+ = 102 pm

Radius of cation, Br^- = 196 pm

\frac{r_{cation}}{r_{anion}}=\frac{102}{196}=0.520

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.

The relation between radius ratio and coordination number are shown below.

Therefore, the expected coordination number of NaBr is, 6.

8 0
2 years ago
What is the molar mass of al (clo2)3
frozen [14]
The molar mass is 229.33
4 0
1 year ago
Oxygen gas, generated by the reaction 2KClO3(s)---2KCl(s)+3O2(g), is collected over water at 27•C in 3.72L vassel at a total pre
Julli [10]

Answer:

moles = 0.093 moles

Explanation:

In this case, we know that this reaction is taking plave in a vessel that has a 730 torr of total pressure.

The total pressure is a value obtained by:

Pt = Pwater + PO2

We need to know the pressure of O2, because then, with stoichiometry, we can calculate the moles of KClO3

The pressure of oxygen is:

PO2 = 730 - 26 = 704 Torr

Now, this pressure is in Torr, and we need to convert it to Atm, so:

704 Torr / 760 Torr = 0.9263 atm

Now, let's use the ideal gas equation:

PV = nRT

With this expression, we will calculate the moles of O2, and then, the moles of KClO3:

n = PV/RT

R = 0.082 L atm /K mol

P = 0.9263 atm

V = 3.72 L

T = 27 + 273 = 300 K

Replacing the data:

n = 0.9263 * 3.72 / 300 * 0.082

n = 0.14 moles

Finally, by stoichiometry, we know that 2 moles of KClO3 produces 3 moles of O2, so:

moles of KClO3 = 0.14 * 2/3 = 0.093 moles of KClO3

6 0
1 year ago
2.00 liters of hydrogen, originally at 25.0 °C and 750.0 mm of mercury, are heated until a volume of 20.0 liters and a pressure
dedylja [7]

Answer:  The new temperature is 10643 K

Explanation:

Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.

The combined gas equation is,

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

where,

P_1 = initial pressure of gas = 750.0 mm Hg = 0.98 atm   (760mmHg=1atm)

P_2 = final pressure of gas = 3.50 atm

V_1 = initial volume of gas = 2.00 L

V_2 = final volume of gas = 20.0 L

T_1 = initial temperature of gas = 25.0^oC=273+25.0=298.0K

T_2 = final temperature of gas = ?

Now put all the given values in the above equation, we get:

\frac{0.98\times 2.00}{298.0K}=\frac{3.50\times 20.0}{T_2}

T_2=10643K

Thus the new temperature is 10643 K

6 0
1 year ago
Other questions:
  • How many molecules are there in 79g of Fe2O3? how many atoms is this?
    12·1 answer
  • Which statement best describes how electrons fill orbitals in the periodic table? Electrons fill orbitals in order of their incr
    12·2 answers
  • A 5 mole sample of liquid acetone is converted to a gas at 75.0°C. If 628 J are required to raise the temperature of the liquid
    12·1 answer
  • Find the molarity of 750 ml solution containing 346 g of potassium nitrate
    12·1 answer
  • A student is given a sample of a blue copper sulfate hydrate. He weighs the sample in a dry covered porcelain crucible and got a
    11·1 answer
  • Suppose that 0.48 g of water at 25 ∘ C condenses on the surface of a 55- g block of aluminum that is initially at 25 ∘ C . If th
    9·1 answer
  • The sculpted pinnacles in Bryce Canyon National Park are the result of _____. A. differential weathering B. frost wedging C. exf
    8·2 answers
  • How many kilograms of gasoline fill a 12.0-gal gas tank
    14·1 answer
  • Perform the following conversion: 6.1 × 103 K (the surface temperature of the Sun) to °F and °C. Pay attention to the number of
    10·1 answer
  • How many grams of sulfur must be burned to give 100.0 g of So2
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!