Mass = ?
Density = 2.70 g/mL
Volume = 276 mL
Therefore:
D = m / V
2.70 = m / 276
m = 2.70 x 276
m = 745.2 g
Answer:
The molarity of this sugar solution in water is 2.18 M
Explanation:
Step 1: Data given
Mass of sugar (C12H22O11) = 186.55 grams
Molar mass of C12H22O11 = 342.3 g/mol
Volume of water = 250.0 mL = 0.250 L
Step 2: Calculate moles sugar
Moles sugar = mass sugar / molar mass sugar
Moles sugar = 186.55 grams / 342.3 g/mol
Moles sugar = 0.545 moles
Step 3: Calculate molarity of the sugar solution
Molarity = moles sugar / volume of water
Molarity = 0.545 moles / 0.250 L
Molarity = 2.18 MThe molarity of this sugar solution in water is 2.18 M
Answer:
1. ΔE = 0 J
2. ΔH = 0 J
3. q = 3.2 × 10³ J
4. w = -3.2 × 10³ J
Explanation:
The change in the internal energy (ΔE) and the change in the enthalpy (ΔH) are functions of the temperature. If the temperature is constant, ΔE = 0 and ΔH = 0.
The gas initially occupies a volume V₁ = 20.0 L at P₁ = 3.2 atm. When the pressure changes to P₂ = 1.6 atm, we can find the volume V₂ using Boyle's law.
P₁ × V₁ = P₂ × V₂
3.2 atm × 20.0 L = 1.6 atm × V₂
V₂ = 40 L
The work (w) can be calculated using the following expression.
w = - P . ΔV
where,
P is the external pressure for which the process happened
ΔV is the change in the volume
w = -1.6 atm × (40L - 20.0L) = -32 atm.L × (101.325 J/1atm.L) = -3.2 × 10³ J
The change in the internal energy is:
ΔE = q + w
0 = q + w
q = - w = 3.2 × 10³ J
Answer:
Explanation:
We are to carefully sketch a curve that relates to the potential energy of two O atoms versus the distance between their nuclei.
From the diagram, O2 have higher potential energy than the N2 molecule. Because on the periodic table, the atomic size increases from left to right on across the period, thus O2 posses a larger atomic size than N2 atom.
Therefore, the bond length formation between the two O atoms will be larger compared to that of the two N atoms.