It would have to be paints consists of pigments,solvents, and binders. Once the [paint has been applied and has dried, the pigments are still able to determine the matched samples.
The molecular formula for aspartame is C14H18N2O5, and its molar mass is about 294 g/mol.
Convert 1.2 g into moles, which gives
1.2 g / 294 g/mol = 4.08 X 10-3 moles aspartame.
Since each mole of aspartame has 2 moles of nitrogen, you have 8.16 X 10-3 moles of N in your 1.2 grams of aspartame.
Finally, multiply that by Avogadro's number to get the number of N atoms:
8.16 X 10^-3 mol X 6.02 X 10^23 = 4.9 X 10^21 nitrogen atoms.
<h3>Answer:</h3>
7.57 × 10⁻²² g of F
<h3>Solution:</h3>
Data Given:
Number of Molecules = 8
M.Mass of BF₃ = 67.82 g.mol⁻¹
Mass of Fluorine atoms = ?
Step 1: Calculate Moles of BF₃
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Putting value,
Moles = 8 Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Moles = 1.33 × 10⁻²³ mol
Step 2: Calculate Mass of BF₃:
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting values,
Mass = 1.33 × 10⁻²³ mol × 67.82 g.mol⁻¹
Mass = 9.0 × 10⁻²² g
Step 3: Calculate Mass of Fluorine Atoms:
As,
67.82 g BF₃ contains = 57 g of F
So,
9.0 × 10⁻²² g will contain = X g of F
Solving for X,
X = (9.0 × 10⁻²² g × 57 g) ÷ 67.82 g
X = 7.57 × 10⁻²² g of F