Larry Finkelstein, Norman Fischer, and Cassius Schwartz have been overlooked, in my opinion.
Answer:
468449163762.0812 W
Explanation:
m = Mass = 
V = Volume =
r = Distance of sphere from isotropic point source of light = 0.5 m
R = Radius of sphere = 2 mm
= Density = 19 g/cm³
c = Speed of light = 
A = Area = 
I = Intensity = 
g = Acceleration due to gravity = 9.81 m/s²
Force due to radiation is given by

According to the question

The power required of the light source is 468449163762.0812 W
Answer:
1. The force of the shelf holding the book up.
Explanation:
The free body diagram of the book is as follows:
1 - The weight of the book towards downwards
2 - The normal force that the shelf exerts on the book towards upwards.
Since the book is at rest, these two forces are equal to each other and according to Newton's Third Law the reaction force to the force of gravity is equal but opposite to the weight of the book. This reaction force is the one that holds the book up on the shelf.
Answer:
The initial velocity of the water from the tank is 5.42 m/s
Explanation:
By applying Bernoulli equation between point 1 and 2

At the point 1
P₁=0 ( Gauge pressure)
V₁= 0 m/s
Z₁=3 m
At point 2
P₂=0 ( Gauge pressure)
Z₂= 0 m/s

Now by putting the values




V₂= 5.42 m/s
The initial velocity of the water from the tank is 5.42 m/s
Answer:
1.6 secs
Explanation:
In a circus act, an acrobat upwards from the surface of a trampoline
At that same moment another acrobat perched 9.0m above him
A ball is released from rest
While still in motion the acrobat catches the ball
He left the ball with a trampoline of 5.6m/s
Since the ball is falling downwards from a distance then acceleration will be negative
a= -9.8
s= d
s= 1/2at^2
= 1/2 × (-9.8)t^2
= 0.5× (-9.8)t^2
d = -4.9t^2
Therefore the time the acrobat stays in the air before catching the ball can be calculated as follows
9 - 4.9t^2= 5.6t + 1/2(-9.8)t^2
9 - 4.9t^2= 5.6t + (-4.9)t^2
9 - 4.9t^2= 5.6t - 4.9t^2
9= 5.6t
t= 9/5.6
t= 1.6 secs