Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
Answer:
b. 295 pm
Explanation:
To answer this question we need to use the equation of a face-centered cubic laticce:
Edge length = √8 R
<em>Where R is radius of the atom.</em>
<em />
Replacing:
417pm = √8 R
R = 147.4pm is the radius of the atom
As diameter = 2 radius.
Diameter of the metal atom is:
147.4pm* 2 =
295pm
Right answer is:
<h3>b. 295 pm
</h3>
<span>128 g/mol
Using Graham's law of effusion we have the formula:
r1/r2 = sqrt(m2/m1)
where
r1 = rate of effusion for gas 1
r2 = rate of effusion for gas 2
m1 = molar mass of gas 1
m2 = molar mass of gas 2
Since the atomic weight of oxygen is 15.999, the molar mass for O2 = 2 * 15.999 = 31.998
Now let's subsitute the known values into Graham's equation and solve for m2.
r1/r2 = sqrt(m2/m1)
2/1 = sqrt(m2/31.998)
4/1 = m2/31.998
127.992 = m2
So the molar mass of the unknown gas is 127.992 g/mol.
Rounding to 3 significant figures gives 128 g/mol</span>
No, because an atom consists of two main parts and three subatomic
particles, protons, neutrons, and electrons. Each one is smaller than an atom, therefore they are subatomic particles. An atom only requires protons and electrons to be an atom - e.g. Hydrogen has 1 proton and 1 electron. Neutrons do not effect the overall charge of the atom, and only increase the atomic mass.
Answer:
11482 ppt of Li
Explanation:
The lithium is extracted by precipitation with B(C₆H₄)₄. That means moles of Lithium = Moles B(C₆H₄)₄. Now, 1 mole of B(C₆H₄)₄ produce the liberation of 4 moles of EDTA. The reaction of EDTA with Mg²⁺ is 1:1. Thus, mass of lithium ion is:
<em>Moles Mg²⁺:</em>
0.02964L * (0.05581mol / L) = 0.00165 moles Mg²⁺ = moles EDTA
<em>Moles B(C₆H₄)₄ = Moles Lithium:</em>
0.00165 moles EDTA * (1mol B(C₆H₄)₄ / 4mol EDTA) = 4.1355x10⁻⁴ mol B(C₆H₄)₄ = Moles Lithium
That means mass of lithium is (Molar mass Li=6.941g/mol):
4.1355x10⁻⁴ moles Lithium * (6.941g/mol) = 0.00287g. In μg:
0.00287g * (1000000μg / g) = 2870μg of Li
As ppt is μg of solute / Liter of solution, ppt of the solution is:
2870μg of Li / 0.250L =
<h3>11482 ppt of Li</h3>