answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
2 years ago
11

A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to

reach the final velocity of 1,000 meters/second.
Physics
1 answer:
balandron [24]2 years ago
5 0
The velocity is the integral of acceleration.  If acceleration is 100 m/s^2 then velocity is:

v= \int\limits^{}_{}100 \, dt=100t

So to know the velocity at any time, t, we just put t in seconds into this equation.  To know at what time we get to a certain velocity, we set this equation equal to that velocity and solve for t:

100t = 1000 \\  \\  t= \frac{1000}{100} =10s

 
You might be interested in
A violin with string length 32 cm and string density 1.5 g/cm resonates in its fundamental with the first overtone of a 2.0-m or
love history [14]

Answer:

T=1022.42 N

Explanation:

Given that

l = 32 cm ,μ = 1.5 g/cm

L =2 m  ,V= 344 m/s

The pipe is closed so n= 3 ,for first over tone

f=\dfrac{nV}{4L}

f=\dfrac{3\times 344}{4\times 2}

f= 129 Hz

The tension in the string given as

T = f²(4l²) μ

Now by putting the values

T = f²(4l²) μ

T = 129² x (4 x 0.32²)  x 1.5 x  10⁻³ x 100

T=1022.42 N

6 0
2 years ago
If you double the mass of an object while leaving the net force unchanged what is the result
valentinak56 [21]

Answer: If the net force acting on an object doubles, its acceleration is doubled. If the mass is doubled, then acceleration will be halved. If both the net force and the mass are doubled, the acceleration will be unchanged.

Explanation:

5 0
2 years ago
You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
Alika [10]

Answer:

d = 2021.6 km

Explanation:

We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them

Airplane 1

Height   y₁ = 800m

Angle θ = 25°

           cos 25 = x / r

           sin 25 = z / r

           x₁ = r cos 20

           z₁ = r sin 25

          x₁ = 18 103 cos 25 = 16,314 103 m = 16314 m

          z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m

2 plane

Height   y₂ = 1100 m

Angle θ = 20°

          x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m

          z₂ = 20 103 without 25 = 8.452 103 m = 8452 m

The distance between the planes using the Pythagorean Theorem is

         d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2

Let's calculate

        d² = (18126-16314)²  + (1100-800)² + (8452-7607)²

        d² = 3,283 106 +9 104 + 7,140 105

        d² = (328.3 + 9 + 71.40) 10⁴

        d = √(408.7 10⁴)

        d = 20,216 10² m

        d = 2021.6 km

7 0
2 years ago
A single slit, which is 0.050 mm wide, is illuminated by light of 550 nm wavelength. What is the angular separation between the
likoan [24]

Answer:

The separation between the first two minima on either side is 0.63 degrees.

Explanation:

A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:

a\sin \theta_n=n\lambda

with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:

for the first minimum

a\sin \theta_1=(1)\lambda

solving for θ1:

\theta_1=\arcsin (\frac{\lambda}{a})=\arcsin (\frac{550\times10^{-9}}{0.05\times10^{-3}})

\theta_1=0.63 degrees

for the second minimum:

a\sin \theta_2=(2)\lambda

\theta_2=\arcsin (\frac{2\lambda}{a})=\arcsin (\frac{2*550\times10^{-9}}{0.05\times10^{-3}})

\theta_2=1.26 degrees

So, the angular separation between them is the rest:

\Delta \theta =1.26-0.63

\Delta \theta=0.63

4 0
2 years ago
Whipple is confused about the connection between the velocity and acceleration of the tennis ball. he decides to compare the vel
tamaranim1 [39]

The speed of the ball is always zero and the acceleration is always -g when it reaches the top of its motion. This is because when the ball is free, only gravity acts on it which is always downwards, hence g is the net acceleration and it is always negative. However the velocity does not direction change instantly, negative acceleration first slows down the ball with a positive velocity, until that point the ball keeps moving up, then the ball velocity becomes zero just before changing direction and becoming negative after which the ball will now go down along gravity. Hence the ball velocity is zero at the top (neither going up nor down). Mathematically this can be seen as velocity is the integration of acceleration.

7 0
2 years ago
Other questions:
  • A cue ball has a mass of 0.5 kg. During a game of pool, the cue ball is struck and now has a velocity of 3 . When it strikes a s
    13·2 answers
  • What type of weather modification involves the use of large fans to mix surface air with air aloft?
    12·1 answer
  • Which vector has a y-component with a length of 1?
    11·2 answers
  • If the 80 ohm resistor fails, will the 50 ohm and 100 ohm resistor continue to operate? Why or why not?
    5·1 answer
  • A disk rotates around an axis through its center that is perpendicular to the plane of the disk. The disk has a line drawn on it
    9·1 answer
  • Which of the following statements is false?
    6·2 answers
  • Hiran is standing beside the road when he hears a bird flying away from hip and chirping. The bird’s chirp has a frequency of 18
    11·1 answer
  • Two parallel wires carry a current I in the same direction. Midway between these wires is a third wire, also parallel to the oth
    11·2 answers
  • A uniform stationary ladder of length L = 4.5 m and mass M = 11 kg leans against a smooth vertical wall, while its bottom legs r
    12·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!