Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N
Answer: If the net force acting on an object doubles, its acceleration is doubled. If the mass is doubled, then acceleration will be halved. If both the net force and the mass are doubled, the acceleration will be unchanged.
Explanation:
Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
Answer:
The separation between the first two minima on either side is 0.63 degrees.
Explanation:
A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:
with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:
for the first minimum
solving for θ1:


for the second minimum:



So, the angular separation between them is the rest:


The speed of the ball is always zero and the acceleration is always -g when it reaches the top of its motion. This is because when the ball is free, only gravity acts on it which is always downwards, hence g is the net acceleration and it is always negative. However the velocity does not direction change instantly, negative acceleration first slows down the ball with a positive velocity, until that point the ball keeps moving up, then the ball velocity becomes zero just before changing direction and becoming negative after which the ball will now go down along gravity. Hence the ball velocity is zero at the top (neither going up nor down). Mathematically this can be seen as velocity is the integration of acceleration.