' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh
Answer:
Answered
Explanation:
v= 1 m/s
A= 1 m^2
m= 100 kg
y= 1 mm
μ = ?
ζ= viscosity of SAE 20 crankcase oil of 15° C= 0.3075 N sec/m^2
forces acting on the block are
F_s ← ↓ →F_f
mg
N= mg
F_s= shear force = ζAv/y F_f= friction force = μN
now in x- direction F_s= F_f
ζAv/y = μN
0.3075×1×1×1/1×10^{-3} = μ×100
⇒μ=0.313 (coefficient of sliding friction for the block)
Now, as the velocity is increased shear force also increases and due to this frictional force also increases.
Now, to compensate this frictional force friction coefficient must increase
as v∝μ
Answer:
Explanation:
The resultant force F
where
is eastward force,
is force directed towards the North
F=62573.2 N
The magnitude of acceleration of sailboat is given by
Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
The resultant static friction force is equal to 20 N to the left.
Why?
I'm assuming that you forgot to write the question of the exercise, so, I will try to complete it:
"A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-n force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate?"
So, if we are going to calculate the resulting static friction force, it means that there is no movement, we must remember that the friction coefficient will give us the maximum force before the crate starts to move.
We can calculate the static friction force by using the following formula:

Since the crate is not moving (static), the static friction force acting on the crate will be equal to the applied force.
Calculating we have:


Hence, the static friction force is equal to 20 N to the left (since the applied force is acting to the right)
So,
Since the static friction force is equal to the applied force, the crate does not start to move.
Have a nice day!