The answer to this question is D! The ball and stick model! Hope this helps :)
The balanced equation for combustion is as follows;
2CH₃OH + 3O₂ ---> 2CO₂ + 4H₂O
The stoichiometry of CH₃OH to O₂ is 2:3
the limiting reagent is the reactant that is fully consumed during the reaction. The amount of product formed is directly proportional to the amount of limiting reactant produced. The excess reagent is the reactant that is provided in excess and is not fully used up, there will be an amount of this reagent remaining after the reaction.
If methanol is the limiting reactant,
If 2 mol of methanol reacts with 3 moles of O₂
Then 24 mol of methanol reacts with - 3/2 x 24 = 36 mol of O₂ should be present
But only 15 mol of O₂ is present, therefore O₂ is the limiting reactant and methanol is in excess.
3 mol of O₂ reacts with 2 mol of CH₃OH
then 15 mol of O₂ reacts with 2/3 x 15 = 10 mol of CH₃OH
Excess reactant is methanol, 10 mol are used up therefore 24 - 10 mol = 14 mol are remaining at the end of the reaction
The answer:
we should know the meaning of each abbreviation:
ms means millisecond, its value is 10^-3 s
ns means means nanosecond, its value is 10^-9 s
ps means picosecond, its value is 10^-12 s
fs means femtosecond, its value is 1x 10^15 s
<span>Expressions of the quantity 556.2 x 10^-12 are</span>
556.2 x 10^-12 =556.2 ps
556.2 x 10^-12 =556.2 x 10^-9 x 10^-3= 556.2 x 10^-9 ms
556.2 x 10^-12 = 556.2 x 10^-3 x 10^-9 = 556.2 x 10^-3 ns
556.2 x 10^-12 = 556.2 x 10^- 27 x 10^15 = 556.2 x 10^- 27 fs
The amount of substance present in a certain object with a given half-life in terms of h can be expressed through the equation,
A(t) = (A(o))(0.5)^(t/h)
where A(t) is the amount of substance after t years and A(o) is the original amount. In this item we are given that A(t)/A(o) is equal to 0.89. Substituting the known values,
0.89 = (0.5)(t / 5730 years)
The value of t from the equation is 963.34 years.
<em>Answer: 963 years</em>