answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
1 year ago
14

Liquid nitrogen has a density of 0.807 g/ml at –195.8 °c. if 1.00 l of n2(l) is allowed to warm to 25°c at a pressure of 1.00 at

m, what volume will the gas occupy? (r = 0.08206 l×atm/k×mol)
Chemistry
1 answer:
Flauer [41]1 year ago
8 0
Step 1: Change density from g/mL to g/L;

                                  0.807 g/mL  =  807 g/L

Step 2: Find Moles of N₂;
As,
             Density  =  Mass / Volume
Or,
             Mass  =  Density × Volume

Putting Values,

            Mass  =  807 g/L × 1 L

            Mass  =  807 g
Also,
            Moles  =  Mass / M.mass

Putting values,

            Moles  =  807 g / 28 g.mol⁻¹

            Moles  =  28.82 moles

Step 3: Apply Ideal Gas Equation to Find Volume of gas occupied,

As,
                        P V  =  n R T

                            V  =  n R T / P
Putting Values, remember! don't forget to change temperatue into Kelvin (25 °C + 273 = 298 K)

                 V  =  (28.82 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 298 K) ÷ 1 atm

                 V  =  704.76 L
You might be interested in
A 0.380 kg sample of aluminum (with a specific heat of 910.0 J/(kg x K)) is heated to 378 K and then placed in 2.40 kg of water
lbvjy [14]

Answer:

The equilibrium temperature of the system is 276.494 Kelvin.

Explanation:

Let consider the system formed by the sample of aluminium and water as a control mass, in which the sample is cooled and water is heated until thermal equilibrium is reached. The energy process is represented by First Law of Thermodynamics:

Q_{water} -Q_{sample} = 0

Q_{water} = Q_{sample}

Where:

Q_{water} - Heat received by water, measured in joules.

Q_{sample} - Heat released by the sample of aluminium, measured in joules.

Given that no mass is evaporated, the previous expression is expanded to:

m_{w}\cdot c_{p,w}\cdot (T-T_{w}) = m_{s}\cdot c_{p,s}\cdot (T_{s}-T)

Where:

m_{s}, m_{w} - Mass of water and the sample of aluminium, measured in kilograms.

c_{p,s}, c_{p,w} - Specific heats of the sample of aluminium and water, measured in joules per kilogram-Kelvin.

T_{s}, T_{w} - Initial temperatures of the sample of aluminium and water, measured in Kelvin.

T - Temperature which system reaches thermal equilibrium, measured in Kelvin.

The final temperature is now cleared:

(m_{w}\cdot c_{p,w}+m_{s}\cdot c_{p,s})\cdot T = m_{s}\cdot c_{p,s}\cdot T_{s}+m_{w}\cdot c_{p,w}\cdot T_{w}

T = \frac{m_{s}\cdot c_{p,s}\cdot T_{s}+m_{w}\cdot c_{p,w}\cdot T_{w}}{m_{w}\cdot c_{p,w}+m_{s}\cdot c_{p,s}}

Given that m_{s} = 0.380\,kg, m_{w} = 2.40\,kg, c_{p,s} = 910\,\frac{J}{kg\cdot K}, c_{p,w} = 4186\,\frac{J}{kg\cdot K}, T_{s} = 378\,K and T_{w} = 273\,K, the final temperature of the system is:

T = \frac{(0.380\,kg)\cdot \left(910\,\frac{J}{kg\cdot K} \right)\cdot (378\,K)+(2.40\,kg)\cdot \left(4186\,\frac{J}{kg\cdot K} \right)\cdot (273\,K)}{(2.40\,kg)\cdot \left(4186\,\frac{J}{kg\cdot K} \right)+(0.380\,kg)\cdot \left(910\,\frac{J}{kg\cdot K} \right)}

T = 276.494\,K

The equilibrium temperature of the system is 276.494 Kelvin.

7 0
2 years ago
Which of the following phrases describes valence electrons?
kykrilka [37]

Answer:

C

Explanation:

because valence electrons are located at the last energy level

7 0
2 years ago
Please help like now please
DENIUS [597]
Pictures are grayed out
7 0
2 years ago
Explain how a solution can be both dilute and saturated.
svlad2 [7]
Dilution<span> is when you decrease the concentration of a </span>solution<span> by adding a solvent. As a result, if you want to </span>dilute<span> salt water, just add water. ... Add more solute until it quits dissolving. That point at which a solute quits dissolving is the point at which it's </span>saturated<span>.</span>
4 0
1 year ago
Read 2 more answers
The amount of gas that occupies 36.52 L at 68.0°C and 672 mm Hg is __________ mol.
ASHA 777 [7]
We assume that this gas is an ideal gas. We use the ideal gas equation to calculate the amount of the gas in moles. It is expressed as:

PV = nRT
(672) (1/760) (36.52) = n (0.08206) ( 68 +273.15)
n = 1.15 mol of gas

Hope this answers the question. Have a nice day.
7 0
1 year ago
Other questions:
  • At higher elevations, the boiling point of water decreases, due to the decrease in atmospheric pressure. As a result, what could
    7·1 answer
  • For c2h3o2−, write an equation that shows how the anion acts as a base.
    11·2 answers
  • Consider this equilibrium: N2(g) + 3H2(g) 2NH3(g) + energy. Certain conditions provide less than 10% yield of NH3 at equilibrium
    11·1 answer
  • When trying to identify an unknown element a scientist determine other elements the unknown element reacts with chemicals watch
    6·1 answer
  • a compound is found to have 46.67% nitrogen, 6.70% hydrogen, 19.98% carbon and 26.65% oxygen, what is the empirical formula?
    15·1 answer
  • Two students made the Lewis dot diagrams of NH3. The diagrams are as shown.
    12·1 answer
  • Phosphorous acid, h3po3(aq), is a diprotic oxyacid that is an important compound in industry and agriculture. calculate the ph f
    15·1 answer
  • Calculate Δ H o for the reaction. CH3OH + HCl → CH3Cl + H2O answer is in kJ/mol .
    14·1 answer
  • Predict what will observe in below mention experiment.
    10·1 answer
  • An element has four naturally occurring isotopes with the masses and natural abundances given here. Isotope Mass (amu) Abundance
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!