Answer:
The Point C shows the location of 5-2i in the complex plane: 5 points to the right of the origin and 2 points down from the origin.
Step-by-step explanation:
We have the complex number 5-2i and we have to show the location of the point that represents that number in the complex plane
In the complex plane the real numbers are located in the horizontal axis, increasing to the right. The positives real numbers are at the right of the origin and the negatives to the left.
The complex numbers are located in the vertical axis, with the positives over the origin and the negatives below the origin.
This complex number 5-2i is the sum of a real part (5) and a imaginary part (-2i), so the point will be 5 units rigth on the horizontal axis (for the real part) and 2 units down in the vertical axis (for the imaginary part).
Answer: The first machine would cost $420
and the second machine would cost $432
you should buy the first machine
Step-by-step explanation:If you get a 30% discount, then you are paying 70% of the selling price.
Machine 1: 600(.70) = 420
Machine 2: A 10% discount means you pay 90%
600(.90) = 540 But now you get a 20% discount on that amount, which means you would pay 80%
So, 540(.80) = 432
<u>Answer-</u>
The standard error of the confidence interval is 0.63%
<u>Solution-</u>
Given,
n = 2373 (sample size)
x = 255 (number of people who bought)
The mean of the sample M will be,

Then the standard error SE will be,


Therefore, the standard error of the confidence interval is 0.63%
Answer:
Yes the sample can be use to make inference
Step-by-step explanation:
The inference is possible if the conditions:
p*n > 10 and q*n > 10
where p and q are the proportion probability of success and q = 1 - p
n is sample size
Then p = 12 / 30 = 0,4 q = 1 - 0,4 q = 0,6
And p*n = 0,4 * 30 = 12 12 > 10
And q*n = 0,6 * 30 = 18 18 > 10
Therefore with that sample the conditions to approximate the binomial distribution to a Normal distribution are met
(annual interest)/(loan amount) = interest rate
(12×$2,600)/$400,000 = .078 = 7.8% . . . . annual interest rate