Answer:
C. 2.000 M C6H12O6
Explanation:
Let us obtain the molarity of the solution.
Molar Mass of C6H12O6 = (12x6) + (12x1) + (16x6) = 72 + 12 + 96 = 180g/mol
Mass of C6H12O6 = 180g
Number of mole = Mass /Molar Mass
Number of mole of C6H12O6 = 180/180 = 1mole
Volume = 500mL = 500/1000 = 0.5L
Molarity = mole /Volume
Molarity = 1/0.5
Molarity = 2M
So the solution will be best labelled as 2M C6H12O6
Answer:
B10 5N +5P= Li6 3N +3P
Cs 137 82N+55P = I 133 80N + 53P
Explanation:
Answer: 
Explanation:
Significant figures : The figures in a number which express the value or the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
Rules for significant figures:
Digits from 1 to 9 are always significant and have infinite number of significant figures.
All non-zero numbers are always significant.
All zero’s between integers are always significant.
All zero’s after the decimal point are always significant.
All zero’s preceding the first integers are never significant.
Thus
has three significant figures
Answer:
The atomic radius of calcium is approximately 175
Explanation:
Given that the atomic radius of magnesium = 150 pm
The atomic radius of strontium = 200 pm
Therefore, given that calcium comes in between magnesium and strontium in group 2 of the periodic table, the atomic radius should be half way between the length of the atomic radius of magnesium and strontium, given that the atomic radius is not a fixed quantity
Therefore;
The atomic radius of calcium is approximately given as follows;
The approximate atomic radius (200 + 150)/2 = 175 pm.