answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
2 years ago
15

If a 50 tooth sprocket turns at a speed of 20 rpm how many rpm will a 30 tooth sprocket turn

Physics
1 answer:
GREYUIT [131]2 years ago
7 0

When two sprockets are in contact with each other then at the contact of sprockets the tangential velocity and tangential acceleration of the sprockets must be same.

Now we can say that tangential velocity is given as

v = Rw

here we know that

w = 2\pi f

also we can say

2\pi R = N*x

x = width of each sprocket

So tangential speed is given as

v = \frac{N*x}{2\pi} * 2\pi f

now since tangential speed of two sprockets are same

N_1*x*f_1 = N_2*x*f_2

given that

N_1 = 50

f_1 = 20 rpm

N_2 = 30

now from above equation

50*20 = f_2 * 30

f_2 = \frac{100}{3} rpm

You might be interested in
What voltage is required to move 6A through 20?<br><br>​
Marina CMI [18]

Answer:

120V

Explanation:

Given parameters:

Current  = 6A

Resistance  = 20Ω

Unknown:

Voltage = ?

Solution:

According to ohms law;

           V = IR

Where V is the voltage

            I is the current

            R is the resistance

Now, insert the parameters and solve;

    V  = 6 x 20  = 120V

7 0
2 years ago
A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an
kykrilka [37]

Answer:

a) the impulse exerted by the rivet when the anvil has an infinite mass support is 0.932 lb.s

the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b) the impulse exerted by the rivet when the anvil has a support weight of 9 lb = 0.799 lb.s

the energy absorbed by the rivet under each blow when the anvil has a support weight of 9 lb is = 7.99 ft.lb

Explanation:

The first picture shows a schematic view of a free body momentum diagram of the hammer head and the anvil.

Using the principle of conservation of momentum to determine the final velocity of anvil and hammer after the impact; we have:

m_Hv_H + m_Av_A = m_Hv_2+m_Av_2

From the question given, we can deduce that the anvil is at rest;

∴ v_A = 0; then, we have:

m_Hv_H + 0 = (m_H+m_A) v_2

Making v_2 the subject of the formula; we have:

v_2 = \frac{m_Hv_H}{m_H + m_A}       ------- Equation  (1)

Also, from the second diagram; there is a representation of a free  body momentum  of the hammer head;

From the diagram;

F = impulsive force exerted on the  rivet

Δt = the change in time of application of the impulsive force

Using the principle of impulse of momentum to the hammer in the quest to determine the impulse exerted (i.e FΔt ) on the rivet; we have:

m_Hv_H - F \delta t = m_Hv_2

- F \delta t = - m_Hv_H + m_Hv_2

F \delta t = m_Hv_H - m_Hv_2

F \delta t = m_H(v_H - v_2)        ------- Equation   (2)

Using the function of the kinetic energy  of the hammer before impact T_1; we have:

T_1 = \frac{1}{2} m_Hv_H^2  -------- Equation (3)

We determine the mass of the hammer m_H  by using the formula from:

W_H = m_Hg

where;

W_H = weight of the hammer

m_H = mass of the hammer

g = acceleration due to gravity

Making m_H the subject of the formula; we have:

m_H = \frac{W_H}{g}

m_H = \frac{1.5 \ lb}{32.2 \ ft/s^2}

m_H = 0.04658 \ lb.s^2/ft

Now;

T_1 = \frac{1}{2} m_Hv_H^2

T_1 = \frac{1}{2}*(0.04658 \ lb.s^2 /ft) *(20 \ ft/s)^2

T_1 = \frac{18.632 }{2}

T_1 = 9.316 \ ft.lb

After the impact T_2 ; the final kinetic energy of the hammer and anvil can be written as:

T_2 = \frac{1}{2}(m_H +m_A)v^2_2

Recall from equation (1) ; where v_2 = (\frac{m_Hv_H}{m_H+m_A})  ; if we slot that into the above equation; we have:

T_2 = \frac{1}{2}(m_H +m_A)( \frac{m_Hv_H}{m_H+m_A})^2

T_2 = \frac{1}{2} \frac{m^2_H +v^2}{m_H+m_A}

T_2 = \frac{1}{2} ({m^2_H +v^2})(\frac{m_H}{m_H+m_A})

Also; from equation (3)

T_1 = \frac{1}{2} m_Hv_H^2; Therefore;

T_2 = T_1 (\frac{m_H}{m_H+m_A})    ----- Equation (4)

a)

Now; To calculate the impulse exerted by the rivet FΔt and the energy absorbed by the rivet under each blow  ΔT when the anvil has an infinite mass support; we have the following process

First , we need to find the mass of the anvil when we have an infinite mass support;

mass of the anvil m_A = \frac{W_A}{g}

where we replace;  W_A \ with \ \infty and g = 32.2 ft/s²

m_A =  \frac{\infty}{32.2 \ ft/s}

However ; from equation (1)

v_2 = \frac{m_H v_H}{m_H + m_A}

v_2 = \frac{0.04658*20}{0.04658+ \ \infty}

v_2 = 0

From equation (2)

F \delta t = m_H(v_H + v_2)      

F \delta t = (0.04658 lb .s^2 /ft )(20ft/s  - 0)

F \delta t = \ 0.932 \  lb.s

Therefore the impulse exerted by the rivet when the anvil has an infinite mass support is  0.932 lb.s

For the energy absorbed by the rivet ; we have:

T_2 = T_1 (\frac{m_H}{m_H+m_A} )

where;

T_1= 9.316 \ ft.lb

m_H = 0.04658 \ lb.s^2/ft

m_A = \infty

Then;

T_2 = (9.316 \ ft.lb) (\frac{0.04658\  lb.s^2/ft)}{0.04658  \ lb.s^2/ft+ \infty} )

T_2 = (9.316 \ ft.lb)* 0

T_2 = 0

Then the energy absorbed by the rivet under each blow ΔT when the anvil has an infinite mass support

ΔT = T_1 - T_2

ΔT = 9.316 ft.lb - 0

ΔT ≅  9.32 ft.lb

Therefore; we conclude that the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b)

Due to the broadness of this question, the text is more than 5000 characters, so i was unable to submit it after typing it . In the bid to curb that ; i create a document for the answer  for the part b of this question.

The attached file can be found below.

5 0
2 years ago
A tank contains 100 gal of water and 50 oz of salt.water containing a salt concentration of 1 4 (1 1 2 sin t) oz/gal flows into
Alchen [17]

Answer:

Explanation:

Heres the possible full question and solution:

A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of ¼ (1 + ½ sin t) oz/gal flows ito the tank at a rate of 2 gal/min, and the mixture in the tank flows out at the same rate.

a. Find the amount of salt in the tank at any time.

b. Plot the solution for a time period long enough so that you see the ultimate behavior of the graph.

c. The long-time behavior of the solution is an oscillation about a certain constant level. What is this level? What is the amplitude of the oscillation?

solution

a)

Consider the tank contains 100gal of water and 50 oz of salt

Assume that the amount of salt in the tank at time t is Q(t).

Then, the rate of change of salt in the tank is given by \frac{dQ}{dt}.

Here, \frac{dQ}{dt}=rate of liquid flowing in the tank - rate of liquid flowing out.

Therefore,

Rate_{in} =2gal/min \times \frac{1}{4} (1+ \frac{1}{2}sin t)oz/gal\\\\\\ \frac{1}{2} (1+ \frac{1}{2}sin t)oz/min\\\\\\Rate_{out}=2gal/min \times\frac{Q}{100}oz/gal\\\\\frac{Q}{50}oz/min

Therefore,

\frac{dQ}{dt} can be evaluated as shown below:

\frac{dQ}{dt}=\frac{1}{2}(1+\frac{1}{2}\sin t)-\frac{Q}{50}\\\\\\\frac{dQ}{dt}+\frac{1}{50}Q=\frac{1}{2}+\frac{1}{4}\sin t

The above differential equation is in standard form:

\frac{dy}{dt}+Py=G

Here, P=\frac{1}{50},G=\frac{1}{2}+\frac{1}{4}\sin t

The integrating factor is as follows:

\mu(t)=e^{\int {P}dt}\\\mu(t)=e^{\int {\frac{1}{50}}dt}\\\mu(t)=e^{\frac{t}{50}}

Thus, the integrating factor is  \mu(t)=e^{\frac{t}{50}}

Therefore, the general solution is as follows:

y\mu(t)=\int {\mu (t)G}dt\\\\Qe^{\frac{t}{50}}=\int {e^{\frac{t}{50}}(\frac{1}{2}+\frac{1}{4}\sin t) dt}\\\\Qe^{\frac{t}{50}}=\frac{1}{2}\int {e^{\frac{t}{50}}dt + \frac{1}{4}\int {\sin t {e^{\frac{t}{50}}} dt}\\\\\Qe^{\frac{t}{50}}=25 {e^{\frac{t}{50}} + \frac{1}{4}\int {\sin t {e^{\frac{t}{50}}} dt}+C...(1)

Here, C is arbitrary constant of integration.

Solve \int {\sin te^{\frac{t}{50}}} dt}

Here u = e^{\frac{t}{50}} and v =\sin t.

Substitute u , v in the below formula:

\int{u,v}dt=u\int{v}dt-\int\frac{du}{dt}\int{v}dt\dot dt\\\\\int {e^{\frac{t}{50}}\sin t}dt=-e^{\frac{t}{50}}\cos t + \frac{1}{50}\int{e^{\frac{t}{50}}\cos t}dt...(2)

Now, take u = e^{\frac{t}{50}}, v =\sin t

Therefore, \int{e^{\frac{t}{50}}\cos t} dt=\int {e^{\frac{t}{50}}\sin t}dt - \frac{1}{50}\int{e^{\frac{t}{50}}\sin t}dt...(3)

Use (3) in equation(2)

\int {e^{\frac{t}{50}}\sin t}dt=-e^{\frac{t}{50}}\cos t + \frac{e^{\frac{t}{50}}}{50}\sin t - \frac{1}{2500}\int{e^{\frac{t}{50}}\sin t}dt\\\\\frac{2501}{2500}\int{e^{\frac{t}{50}}\sin t}dt={e^{\frac{t}{50}}\cos t}+\frac{e^{\frac{t}{50}}}{50}\sin t\\\\\int{e^{\frac{t}{50}}\sin t}dt=\frac{2500}{2501}{e^{\frac{t}{50}}\cos t}+\frac{50}{2501}e^{\frac{t}{50}}\sin t...(4)

Use (4) in equation(l) .

Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+C

Apply the initial conditions t =0, Q = 50.

50=25-\frac{625}{2501}+c\\\\c=\frac{63150}{2501}

So, Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+\frac{63150}{2501}

Therefore, the amount of salt in the tank at any time is as follows:

Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+\frac{63150}{2501}e^{\frac{-t}{50}}

b)

sketch the solution curve as shown in attachment as graph 1:

CHECK COMMENT FOR C

3 0
2 years ago
A ray of light is incident on a plane surface separating two sheets of glass with refractive indexes 1.70 and 1.58. The angel of
dlinn [17]

Answer:

r = 71.8⁰

Explanation:

given,

refractive index of the glass 1 = 1.70

refractive index of glass 2 = 1.58

angle of incidence = 62°

angle of refraction =?

using Snell's law

\dfrac{sin\ i}{sin\ r} = \dfrac{n_2}{n_1}

\dfrac{sin\ 62^0}{sin\ r} = \dfrac{1.58}{1.70}

1.7 ×sin 62 ^0 = 1.58× sin r

sinr = \dfrac{1.7\times sin 62^0}{1.58}

sin r = 0.95

r = sin⁻¹(0.95)

r = 71.8⁰

angle of refraction =r = 71.8⁰

4 0
2 years ago
Read 2 more answers
Two speakers face each other, and they each emit a sound of wavelength λ. One speaker is 180∘ out of phase with respect to the o
mel-nik [20]

Answer:

a. 3/4λ

d. 1/4λ

Explanation:

When the wavelength of the sound waves is λ and the two waves are having same frequency the waves are said to be out of phase if their phase difference is in the multiples of \frac{\lambda}{2} or 180°.

When the two waves are out of phase then their opposite maxima coincide at the same time resulting in the minimum amplitude of the resulting wave throughout.

  • As we observe from the schematic that the a wave has sinusoidal pattern of variation and we get a maxima after each \frac{\lambda}{4} of the distance.
  • Here we have two speakers out of phase therefore on shifting one of the speakers by the odd multiples of \frac{\lambda}{2} we have the maxima or the extreme amplitudes.

So, we must place the microphone at  3/4λ and 1/4λ to pickup the loudest sound.

4 0
2 years ago
Other questions:
  • What is the mass of a large dog that weighs 441 newtons
    10·1 answer
  • The mass of the Sun is 2 × 1030 kg, and the mass of Saturn is 5.68 × 1026 kg. The distance between Saturn and the Sun is 9.58 AU
    12·2 answers
  • if one sprinter runs the 400.0 m in 58 seconds and another can run the same distance in 60.0 seconds, by how much distance will
    11·2 answers
  • A 1.0-kg ball has a velocity of 12 m/s downward just before it strikes the ground and bounces up with a velocity of 12 m/s upwar
    6·1 answer
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    15·1 answer
  • While sitting in your car by the side of a country road, you are approached by your friend, who happens to be in an identical ca
    14·1 answer
  • To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
    5·1 answer
  • Suppose that at room temperature, a certain aluminum bar is 1.0000 m long. The bar gets longer when its temperature is raised. T
    14·1 answer
  • Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an ampli
    6·1 answer
  • A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!