<span>Answer:The weight of the door creates a CCW torque given by
Tccw = 145 N*3.13 m / 2
You need a CW torque that's equal to that
Tcw = F*2.5 m*sin20</span>
The partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
<u>Explanation:</u>
H₂ + Br₂ ⇒ 2HBr
PH₂ = 0.782atm
PBr₂ = 0.493atm
Kp = (PHBr)²/ (PH₂) (PBr₂) = 1.4 X 10⁻²¹
At equilibrium:
Let 2x = pressure of HBr
PH₂ = 0.782 -x
PBr₂ = 0.493 - x
Kp = (2x)^2 / (0.782-x)(0.493-x)
Now, because Kp is very small, x will be very small compared to 0.782 and 0.493.
Then,
Kp = 1.4X10⁻²¹ = (4x²) / (0.782)(0.493)
x = 1.2X10⁻¹¹
PHBr = 2x = 2.4 X 10⁻¹¹ atm
Therefore, the partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
Answer:

6000
1.2 J

Explanation:
I = Current = 1 A
t = Time = 2 ms
n = Number of electrocyte
V = Voltage = 100 mV
Charge is given by

The charge flowing through the electrocytes in that amount of time is 
The maximum potential is given by

The number of electrolytes is 6000
Energy is given by

The energy released when the electric eel delivers a shock is 1.2 J
Equivalent capacitance is given by

The equivalent capacitance of all the electrocyte cells in the electric eel is 
Starting from the angular velocity, we can calculate the tangential velocity of the stone:

Then we can calculate the angular momentum of the stone about the center of the circle, given by

where
m is the stone mass
v its tangential velocity
r is the radius of the circle, that corresponds to the length of the string.
Substituting the data of the problem, we find
The two flaws in
her experiment’s design are
<span>- She introduced at least one confounding variable.</span>
<span>- She tried to test multiple hypotheses at a time</span>
In the above mentioned experiment she had to have four samples to prove
four hypotheses, each one separately and not to mix two hypotheses in an alone
sample, that what it brings as consequence is the confusion.