When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.
The answer is adequate nutrition, regular physical activity, and practical ways to reduce calories while retaining important nutrients.
Explanation:
Despite that adequate nutrition, regular physical activity, and practical ways to reduce calories while retaining important nutrients is one of the best strategy to reducing weight, most time it is very difficult for those that want to reduce or control their weight to discipline themselves enough to follow these routine. But one an individual that want to loose weight or live a healthy lifestyle is able to follow these procedures he/she will surely loose weight.
Answer:
F = 1618.65[N]
Explanation:
To solve this problem we use the following equation that relates the mass, density and volume of the body to the floating force.
We know that the density of wood is equal to 750 [kg/m^3]
density = m / V
where:
m = mass = 165[kg]
V = volume [m^3]
V = m / density
V = 165 / 750
V = 0.22 [m^3]
The floating force is equal to:
F = density * g * V
F = 750*9.81*0.22
F = 1618.65[N]
Answer:
X= 700 Joules
Explanation:
The question asked about the efficiency of the work done.
The formula for efficiency is: Efficiency = (Useful output / input work) * 100%
The useful output given in the question is 140J, the question asked for input work. Let X be the input work. It is also given that the efficiency is 20%.
Using the formula of efficiency,
20 = (140/X) * 100
So, we simply solve the above equation.
X= 140*100/20
X= 700 Joules
The distance travelled during the given time can be found out by using the equations of motion.
The distance traveled during the time interval is "13810.8 m".
First, we will find the deceleration of the motorcycle by using the first <em>equation of motion</em>:

where,
vi = initial velocity = (518 km/h)
= 143.89 m/s
vf = final veocity = 60 % of 143.89 m/s = (0.6)(143.89 m/s) = 86.33 m/s
a = deceleration = ?
t =time interval = 2 min = 120 s
Therefore,

a = -0.48 m/s²
Now, we will use the second <em>equation of motion </em>to find out the distance traveled (s):

<u>s = 13810.8 m = 13.81 km</u>
<u />
Learn more about the equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion.