<h2><u>Answer:</u></h2>
The simulation kept track of the variables and automatically recorded data on object displacement, velocity, and momentum. If the trials were run on a real track with real gliders, using stopwatches and meter sticks for measurement, the data compared by the following statements:
1. (There would be variables that would be hard to control, leading to less reliable data.)
3. (Meter sticks may lack precision or may be read incorrectly.)
4. (Real glider data may vary since real collisions may involve loss of energy.)
5. (Human error in recording or plotting the data could be a factor.)
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
Answer:
(A) Total energy will be equal to 
(b) Energy density will be equal to 
Explanation:
We have given diameter of the plate d = 2 cm = 0.02 m
So area of the plate 
Distance between the plates d = 0.50 mm = 
Permitivity of free space 
Potential difference V =200 volt
Capacitance between the plate is equal to 
(a) Total energy stored in the capacitor is equal to


(b) Volume will be equal to
, here A is area and d is distance between plates

So energy density 
Answer:
0.4 A
Explanation:
From the question,
Electric power = Voltage×current
P = VI.......................... Equation 1
Make I the subject of the equation
I = P/V..................... Equation 2
Given: P = 96 J/s, V = 230 V.
Substitute into equation 2
I = 96/230
I = 0.4 A.
Hence the current is 0.4 A