answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masya89 [10]
2 years ago
8

Oxygen has three naturally occurring isotopes in the following proportions oxygen 16,99.762%(15.994 91 u); oxygen 17, 0.038000%

(16.999 13 u); oxygen 18, 0.20000%(17.999 16 u). What is the average atomic mass of oxygen?
Chemistry
2 answers:
rusak2 [61]2 years ago
8 0

Answer

15.999 u

Explanation:

The atomic mass of O is the <em>weighted average</em> of the atomic masses of its isotopes.

We multiply the atomic mass of each isotope by a number representing its relative importance (i.e., its percent of the total).

Set up a table for easy calculation

0.997 62 × 15.994 91 u = 15.956 8   u

0.000 38 × 16.999 13 u =  0.006 46 u

0.002 00 × 17.999 16 u =  <u>0.036 00 u</u>

                          TOTAL = 15.999      u


Mnenie [13.5K]2 years ago
3 0

The average atomic mass is 15.9993

Why?

Take the percentage and times it by the amu and then add all the new numbers together to get the average atomic mass:

(0.99762 x 15.99491) + (0.00038 x 16.99913) + (0.002 x 17.9916) = 15.9993

You might be interested in
Is utensils a substance homogeneous mixture or heterogeneous mixture
Phoenix [80]

A pure substance or a homogeneous mixture consists of a single phase. A heterogeneous mixture consists of two or more phases. When oil and water are combined, they do not mix evenly, but instead form two separate layers.

7 0
2 years ago
Which of the following pairs of compounds would be most easily separated by thin layer chromatography: n-octyl alcohol and 1-oct
vivado [14]

Answer:

B. n-octyl alcohol and 1-octene

Explanation:

Thin-layer chromatography (TLC) is a chromatography technique used to separate non-volatile mixtures. The principle is that different compounds in the sample mixture travel at different rates due to the differences in interactions with stationary phase and due to the differences in solubility in the solvent. The principal chemical property for separation using this technique is molecular polarity

You can intuit than hexadecane and octadecane don't have big polarity differences, also chlorobenzene and bromobenzene haven't.

An alcohol as n-octyl alcohol has different polarity than an alkene as 1-octene.

Thus, using  thin layer chromatography is most easy to separate:

<em>B. n-octyl alcohol and 1-octene </em>

<em></em>

I hope it helps!

<em></em>

8 0
2 years ago
A bottle of concentrated aqueous sulfuric acid, labeled 98.0 wt% h2so4, has a concentration of 18.0 m. (a) how many milliliters
nadya68 [22]
<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9 First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4. We know that 1dm3=1L, so H2SO4's molarity is C=nV=18.0moles1.0L=18M In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so 18.0moles1Lâ‹…98.0g1mole=1764g1L Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution 98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→ masssolution=1764gâ‹…100.0g98g=1800g Therefore, 1L of 98wt% H2SO4 solution will have a density of Ď=mV=1800g1.0â‹…103mL=1.8gmL H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that 100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4 100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O So, H2SO4's mole fraction is molefractionH2SO4=11+0.11=0.9</span>
5 0
2 years ago
A 0.20 mol sample of MgCl2(s) and a 0.10 mol sample of KCl(s) are dissolved in water and diluted to 500 mL. What is the concentr
igor_vitrenko [27]

Answer:

1 M

Explanation:

Magnesium chloride will furnish chloride ions as:

MgCl_2\rightarrow Mg^{2+}+2Cl^-

Given :

Moles of magnesium chloride = 0.20 mol

Thus, moles of chlorine furnished by magnesium chloride is twice the moles of magnesium chloride as shown below:

Moles =2\times 0.20\ moles

Moles of chloride ions by magnesium chloride = 0.40 moles

Potassium chloride will furnish chloride ions as:

KCl\rightarrow K^{+}+Cl^-

Given :

Moles of potassium chloride = 0.10 moles

Thus, moles of chlorine furnished by potassium chloride is same as the moles of potassium chloride as shown below:

Moles of chloride ions by potassium chloride = 0.10 moles

Total moles = 0.40 + 0.10 moles = 0.50 moles

Given, Volume = 500 mL = 0.5 L (1 mL = 10⁻³ L)

Concentration of chloride ions is:

Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}

Molarity_{Cl^-}=\frac{0.50}{0.5}

<u> The final concentration of chloride anion = 1 M</u>

8 0
2 years ago
The density of o2 gas at 16 degrees Celsius and 1.27atm is?
velikii [3]

Answer:

The density of O₂ gas is 1.71 \frac{g}{L}

Explanation:

Density is a quantity that allows you to measure the amount of mass in a given volume of a substance. So density is defined as the quotient between the mass of a body and the volume it occupies:

density=\frac{mass}{volume}

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:

P * V = n * R * T

So, you can get:

\frac{n}{V} =\frac{P}{R*T}

The relationship between number of moles and mass is:

n=\frac{mass}{molar mass}

Replacing:

\frac{\frac{mass}{molar mass} }{V} =\frac{P}{R*T}

\frac{mass}{V*Molar mass} =\frac{P}{R*T}

So:

\frac{mass}{V} =\frac{P*molar mass}{R*T}

Knowing that 1 mol of O has 16 g, the molar mass of O₂ gas is 32 \frac{g}{mol}.

Then:

\frac{mass}{V} =\frac{P*molar mass of O_{2} }{R*T}

In this case you know:

  • P=1.27 atm
  • molar mass of O₂= 32 \frac{g}{mol}.
  • R= 0.0821 \frac{atm*L}{mol*K}
  • T= 16 °C=  289 °K (0°C= 273°K)

Replacing:

density=\frac{mass}{V} =\frac{1.27atm*32\frac{g}{mol}  }{0.0821\frac{atm*L}{mol*K} *289 K}

Solving:

density= 1.71 \frac{g}{L}

<u><em>The density of O₂ gas is 1.71 </em></u>\frac{g}{L}<u><em></em></u>

3 0
2 years ago
Other questions:
  • Which structural formula correctly represents an organic compound
    7·1 answer
  • Which material has a crystalline structure at room temperature ( 20 degrees Celsius )
    6·2 answers
  • A 10.0-ml sample of 0.200 m hydrocyanic acid (hcn) is titrated with 0.0998 m naoh. what is the ph at the equivalence point? for
    7·1 answer
  • Which compound is an exception to the octet rule?
    10·2 answers
  • H2A and BOH are acid and base and they react according to the following balanced equation: H2A(aq) + 2 BOH(aq) → B2A(aq) + 2 H2O
    6·1 answer
  • Design a synthesis of 2-ethyl-2-hexenoic acid from alcohols of four carbons or fewer.
    11·1 answer
  • A student has two samples of NaCl, each one from a different source. Assume that the only potential contaminant in each sample i
    9·1 answer
  • Which compound would be expected to show intense IR absorption at 2710 and 1705 cm-1? (Ph = phenyl group)
    5·1 answer
  • A student places 1.38g of unknown metal at 99.6C into 60.50g of water at 22.1C. The entire system reaches a uniform temperature
    14·1 answer
  • Calculate the mass of the zinc that reacts with 4.11 g of hydrochloric acid to form 9.1 g of zinc chloride and 3.97 g of hydroge
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!