answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
2 years ago
3

A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he

uses a larger rocket engine that provides 36% more thrust, although doing so increases the mass of the cart by 11%. By what percentage does the cart's acceleration increase?
Physics
1 answer:
kolezko [41]2 years ago
6 0

From Newton #2 . . . F = M A

We'll be looking for acceleration, so before we start, let's divide each side of Newton #2 by (mass) :  A = F / M .  

Original acceleration = F / M

New acceleration = (1.36 F) / (1.11 M)

New acceleration = (1.36 / 1.11) (F / M)

New acceleration = (1.23) (F/M)

New acceleration = (1.23) (original acceleration)

Using the bigger rocket engine increases the acceleration by 23% .

You might be interested in
Un pasager a intarziar la tren. Ajuns pe peron a observat trenul in miscare si a constatat ca unul dintre vagoane a trecut prin
ExtremeBDS [4]

b) intervalul de timp t3 in care prin fata sa trece vagonul urmator

Sper că am ajutat!

3 0
2 years ago
Which of the following most accurately represents John Dalton’s model of the atom? A. a tiny, solid sphere with an unpredictable
aleksley [76]
A and c are the answersss
6 0
2 years ago
Astronomers have discovered a new planet called "Xandar" beyond the orbit of Pluto (No, not really but I need a fake planet for
Burka [1]

Answer:

m = 1.82E+23 kg

Explanation:

G = universal gravitational constant = 6.67E-11 N·m²/kg²

r = radius of orbit = 72,600 km = 7.26E+07 m

C = circumference of orbit = 2πr = 4.56E+08 m

P = period of orbit = 12.9 d = 1,114,560 s

v = orbital velocity of satellite Jim = C/P = 409 m/s

m = mass of Xandar = to be determined

v = √(Gm/r)

v² = [√(Gm/r)]²

v² = Gm/r

rv² = Gm

rv²/G = m

m = rv²/G

mG = universal gravitational constant = 6.67E-11 N·m²/kg²

r = radius of orbit = 72,600 km = 7.26E+07 m

C = circumference of orbit = 2πr = 4.56E+08 m

P = period of orbit = 12.9 d = 1,114,560 s

v = orbital velocity of satellite Jim = C/P = 409 m/s

m = mass of Xandar = to be determined

v = √(Gm/r)

v² = [√(Gm/r)]²

v² = Gm/r

rv² = Gm

rv²/G = m

m = rv²/G

m = 1.82E+23 kg

3 0
2 years ago
Consider the two moving boxcars in Example 5. Car 1 has a mass of m1 = 65000 kg and a velocity of v01 = +0.80 m/s. Car 2 has a m
Amiraneli [1.4K]

Answer:

1.034m/s

Explanation:

We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

m_1 = 65000kg\\v_1 = 0.8m/s\\m_2 = 92000kg\\v_2 = 1.2m/s

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

V_{cm} = \frac{m_1v_1+m_2v_2}{m_1+m_2}

Substituting,

V_{cm} = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

V_{cm} = 1.034m/s

Part B)

For the Part B we need to apply conserving momentum equation, this formula is given by,

m_1v_1+m_2v_2 = (m_1+m_2)v_f

Where here v_f is the velocity after the collision.

v_f = \frac{m_1v_1+m_2v_2}{m_1+m_2}

v_f = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

v_f = 1.034m/s

8 0
2 years ago
A battleship launches a shell horizontally at 100 m/s from the ship’s deck that’s 50 m above the water. The shell is intended to
Annette [7]

Answer:

The shell will land 10.18m away from the buoy.

Explanation:

In order to solve this problem, we must first do a sketch of what the problem looks like (see attached picture).

Now, there are two cases, one with the tailwind and another with the tailwind. In both cases the shell would have the same vertical initial velocity and acceleration, therefore the shell would hit the water in the same amount of time. So we need to first find the time it takes the shell to hit the water.

In order to do so we can use the following equation:

y_{f}=y_{0}+V_{0}t+\frac{1}{2}at^{2}

now, we know that the final height and the initial velocity are to be zero, so we can simplify the equation like this:

0=y_{0}+\frac{1}{2}at^{2}

and solve for t:

t=\sqrt{\frac{-2y_0}{a}}

now we can substitute the values:

t=\sqrt{\frac{-2(50m)}{-9.81m/t^2}}

t=3.19s

Since it takes 3.19s for the shell to hit the water, that's the amount of time it spends flying horizontally.

So we can consider the shell to move at a constant speed if there was no tailwind, so we can find the  distance from the ship to point A to be:

x_{A}=V_{x}t

x_{A}=(100m/s)(3.19)

x_{A}=319m

We can now find the distance between the ship to point B, which is the point the ball falls due to the tailwind. Since the movement will be accelerated in this scenario, we can find the distance by using the following formula:

x_{f}=V_{x0}t+\frac{1}{2}a_{x}t^{2}

So we can substitute the given values:

x_{f}=(100m/s)(3.19s)+\frac{1}{2}(2m/s^{2})(3.19s)^{2}

Which yields:

x_{f}=329.18m

so now we can use the A and B points to find by how far the shell missed the buoy:

Distance=329.18m-319m=10.18m

So the shell missed the buoy by 10.18m.

8 0
2 years ago
Other questions:
  • A bird can fly 25 km/h. How long does it take to fly 15 km?
    14·1 answer
  • Isabella drops a pen off her balcony by accident while celebrating the successful completion of a physics problem. assuming air
    6·1 answer
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • If Pete ( mass=90.0kg) weights himself and finds that he weighs 30.0 pounds, how far away from the surface of the earth is he
    9·1 answer
  • Which of the following four circuit diagrams best represents the experiment described in this problem?
    12·1 answer
  • A box rests on the (horizontal) back of a truck. The coefficient of static friction between the box and the surface on which it
    10·1 answer
  • You are in a rocket moving away from Earth at one-third the speed of light relative to Earth. A friend is on Earth, and an astro
    5·1 answer
  • Which of the following planets helped astronomers locate another planet?
    8·1 answer
  • Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of th
    7·1 answer
  • A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!