First, we write the half equations for the reduction of the chemical species present:
Cu⁺² + 2e → Cu; E° = 0.34 V
Ni⁺² + 2e → Ni; E° = - 0.23 V
In order to determine the potential of the cell, we find the difference between the two values. For this:
E(cell) = 0.34 - (-0.23)
E(cell) = 0.57 V
The second option is correct. (The difference in values is due to different values in literature, and it is negligible)
Answer:
D. Intramolecular covalent bond
Explanation:
Compound D is structurally more rigid as a result of intramolecular covalent bonding. The forces that hold together atoms within a compound are greater as compared to forces holding two molecules together (intermolecular bonding). On the other hand Hydrogen bonds are weaker as compared to covalent bonds. Covalent bonds involve the sharing of electrons between two atoms and Hydrogen bonds are formed between a highly electronegative atom like oxygen, Flourine,Chlorine to hydrogen.
Answer:
59.2 grams
Explanation:
We are given that 70.4% of the weight of the total 200 g of the concentration is made up of nitric acid, the remaining information is not required to solve the problem. Since water and nitric acid are the only components of the solution, the total weight of water is given by:

There are 59.2 grams of water in this solution.
Answer:
The density of O₂ gas is 1.71 
Explanation:
Density is a quantity that allows you to measure the amount of mass in a given volume of a substance. So density is defined as the quotient between the mass of a body and the volume it occupies:

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
So, you can get:

The relationship between number of moles and mass is:

Replacing:


So:

Knowing that 1 mol of O has 16 g, the molar mass of O₂ gas is 32
.
Then:

In this case you know:
- P=1.27 atm
- molar mass of O₂= 32
.
- R= 0.0821

- T= 16 °C= 289 °K (0°C= 273°K)
Replacing:

Solving:
density= 1.71 
<u><em>The density of O₂ gas is 1.71 </em></u>
<u><em></em></u>
The volume of the brick in cubic meters is 0.00108 m³
<u><em>calculation</em></u>
<u><em> </em></u> volume of a brick =length x width x height
-length = 15 cm
width = 6.0 cm
height = 12 cm
volume is therefore= 15 cm x 6.0 cm x 12 cm =1080 cm³
convert 1080 cm³ into m³
that is 1 cm³ = 1 x 10^-6m³
1080 cm³ = ? m³
by cross multiplication
=[ (1080 cm³ x 1 x10^-6 m³) / 1 cm³] = 0.00108 m³