answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
2 years ago
11

A 65 kg trampoline artist jumps vertically upward from the top of a platform with a speed of 5 m/s. how fast is he going as he l

ands on the trampoline 3 m below if the trampoline behaves like a spring with spring stiffness constant 6.2 x 104 n/m, how far does he depress it?
Physics
1 answer:
KIM [24]2 years ago
6 0

m = mass of trampoline artist = 65 kg

v₀ = initial speed of the artist at the top of platform = 5 \frac{m }{s}

h = height through which the artist drop before landing on trampoline = 3 m

v = final speed of the artist just before landing on trampoline = ?

using conservation of energy

Kinetic energy of artist just before landing = initial kinetic energy at the top of platform + potential energy at the top of platform

(0.5) m v² = (0.5) m v₀² + mgh

dividing each term by "m"

(0.5)  v² = (0.5) v₀² + gh

inserting the values

(0.5)  v² = (0.5) (5)² + (9.8)(3)

v = 9.2 \frac{m }{s}

x = compression of the trampoline = ?

k = spring stiffness constant = 62000 \frac{N }{m}

Assuming the lowest depression point as reference line for measuring the potential energy

using conservation of energy

kinetic energy of artist + potential energy of artist before landing = spring potential energy of trampoline

(0.5) m v² + mg x = (0.5) k x²

inserting the values

(0.5) (65) (9.2)² + (65 x 9.8) x = (0.5) (62000) x²

x = 0.31 m

You might be interested in
Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different direc
Advocard [28]

Answer:

the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south

Explanation:

given information:

Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus

A= 27

Ax =  27 sin 60 = - 23.4

Ay = 27 cos 60 = 13.5

Jane walks 16.0 m in a direction 30.0 ∘ south of west, so

B = 16

Bx = 16 cos 30 = -13.9

By = 16  sin 30 = -8

the direction that should be walked by Ricardo to go directly to Jane

R = √A²+B² - (2ABcos60)

   = √27²+16² - (2(27)(16)(cos 60))

   = 23.52 m

now we can use the sines law to find the angle

tan θ = \frac{R_{y} }{R_{x} }

         = By - Ay/Bx -Ax

         = (-8 - 13.5)/(-13.9 - (-23.4))

     θ  = 90 - (-8 - 13.5)/(-13.9 - (-23.4))

         = 24° east of south

4 0
2 years ago
Which changes in an electric motor will make the motor stronger? Check all that apply. using a stronger permanent magnet using a
miv72 [106K]
Use stronger magnets
increase current
push magnets closer to coil
adding more sets of coils
4 0
2 years ago
Read 2 more answers
Eac of the two Straight Parallel Lines Each of two very long, straight, parallel lines carries a positive charge of 24.00 m C/m.
Cloud [144]

Answer:

The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

Explanation:

Given that,

Positive charge = 24.00  μC/m

Distance = 4.10 m

We need to calculate the angle

Using formula of angle

\theta=\sin^{-1}(\dfrac{\dfrac{d}{2}}{2d})

\theta=\sin^{-1}(\dfrac{1}{4})

\theta=14.47^{\circ}

We need to calculate the magnitude of the electric field at a point equidistant from the lines

Using formula of electric field

E=\dfrac{2k\lambda}{r}\times2\cos\theat

Put the value into the formula

E=\dfrac{2\times9\times10^{9}\times24.00\times2\times10^{-6}\cos14.47}{2.05}

E=408094.00\ N/C

E=4.08\times10^{5}\ N/C

Hence, The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

6 0
2 years ago
Aldis is swinging a ball tied to the end of a string over his head. Suddenly, the string breaks and the ball flies away. Arrow b
prisoha [69]

Answer:

Straight line in the direction of the tangential velocity the ball had at the moment the string broke

Explanation:

After the string breaks, the ball now disconnected from the centripetal force that was exerted via the string, continues its travel in a straight line in the direction of the tangential velocity it had at the moment the string broke.

3 0
2 years ago
Read 2 more answers
An airplane weighing 5000 lb is flying at standard sea level with a velocity of 200 mi/h. At this velocity the L/D ratio is a ma
saul85 [17]

Answer:

98.15 lb

Explanation:

weight of plane (W) = 5,000 lb

velocity (v) = 200 m/h =200 x 88/60 = 293.3 ft/s

wing area (A) = 200 ft^{2}

aspect ratio (AR) = 8.5

Oswald efficiency factor (E) = 0.93

density of air (ρ) = 1.225 kg/m^{3} = 0.002377 slugs/ft^{3}

Drag = 0.5 x ρ x v^{2} x A x Cd

we need to get the drag coefficient (Cd) before we can solve for the drag

Drag coefficient (Cd) = induced drag coefficient (Cdi) + drag coefficient at zero lift (Cdo)

where

  • induced drag coefficient (Cdi) = \frac{Cl^{2} }{n.E.AR} (take note that π is shown as n and ρ is shown as p)    

        where lift coefficient (Cl)= \frac{2W}{pAv^{2} }=\frac{2x5000}{0.002377x200x293.3^{2} } = 0.245

        therefore

       induced drag coefficient (Cdi) = \frac{Cl^{2} }{n.E.AR} = \frac{0.245^{2} }{3.14x0.93x8.5} = 0.0024

  • since the airplane flies at maximum L/D ratio, minimum lift is required and hence induced drag coefficient (Cdi) = drag coefficient at zero lift (Cdo)
  • Cd = 0.0024 + 0.0024 = 0.0048

Now that we have the coefficient of drag (Cd) we can substitute it into the formula for drag.        

 Drag = 0.5 x ρ x v^{2} x A x Cd

Drag = 0.5 x 0.002377 x (293.3 x 293.3) x 200 x 0.0048 = 98.15 lb

8 0
2 years ago
Other questions:
  • How does increasing the distance between charged objects affect the electric force between them? the electric force increases be
    12·2 answers
  • An astronaut at rest on earth has a heartbeat rate of 70 beats/min. what will this rate be when she is traveling in a spaceship
    14·1 answer
  • Sophia is planning on going down an 8-m water slide. Her weight is 50 N. She knows that she has gravitational potential energy (
    9·1 answer
  • A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745 ra
    11·1 answer
  • Delicate measurements indicate that the Earth has an electric field surrounding it, similar to that around a positively charged
    9·1 answer
  • The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
    7·1 answer
  • Two speakers, A and B, produce identical sound waves. A listener is 3.2 m away from speaker A. The listener finds the lowest fre
    14·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
  • Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m^3. The tank is fitted with a paddle whe
    11·1 answer
  • Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!