Answer:

And when we apply the limit we got that:

Step-by-step explanation:
Assuming this complete problem: "The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit . 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2"
We have the following formula in order to find the sum of cubes:

We can express this formula like this:
![\lim_{n\to\infty} \sum_{n=1}^{\infty}i^3 =\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Di%5E3%20%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
And using this property we need to proof that: 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
![\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
If we operate and we take out the 1/4 as a factor we got this:

We can cancel
and we got

We can reorder the terms like this:

We can do some algebra and we got:

We can solve the square and we got:

And when we apply the limit we got that:

Answer: The answer is 11 (A)
Step-by-step explanation:
Answer:
(8,-22)
Step-by-step explanation:
i just took the test and checked
Answer:
The mean of the sampling distribution of the sample proportions is 0.82 and the standard deviation is 0.0256.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For proportions, the mean is
and the standard deviation is 
In this problem, we have that:
.
So


The mean of the sampling distribution of the sample proportions is 0.82 and the standard deviation is 0.0256.
Answer:
I'd say D
Step-by-step explanation:
Because it makes the most sense and it is the most notable one.
Correct me if I'm wrong.
Hope this helps :).