The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
Answer:
Height = 53.361 m
Explanation:
There are two balloons being thrown down, one with initial speed (u1) = 0 and the other with initial speed (u2) = 43.12
From the given information we make the following summary
= 0m/s
= t
= 43.12m/s
= (t-2.2)s
The distance by the first balloon is

where
a = 9.8m/s2
Inputting the values

The distance traveled by the second balloon

Inputting the values

simplifying

Substituting D of the first balloon into the D of the second balloon and solving

Now we know the value of t. We input this into the equation of the first balloon the to get height of the apartment

Answer:
On the other hand, Florida's Gulf Coast experiences the greatest number of thunderstorms out of any U.S. location. These types of storms occur on average 130 days per year in Florida.
Answer:
E = k Q 1 / (x₀-x₂) (x₀-x₁)
Explanation:
The electric field is given by
dE = k dq / r²
In this case as we have a continuous load distribution we can use the concept of linear density
λ= Q / x = dq / dx
dq = λ dx
We substitute in the equation
∫ dE = k ∫ λ dx / x²
We integrate
E = k λ (-1 / x)
We evaluate between the lower limits x = x₀- x₂ and higher x = x₀-x₁
E = k λ (-1 / x₀-x₁ + 1 / x₀-x₂)
E = k λ (x₂ -x₁) / (x₀-x₂) (x₀-x₁)
We replace the density
E = k (Q / (x₂-x₁)) [(x₂-x₁) / (x₀-x₂) (x₀-x₁)]
E = k Q 1 / (x₀-x₂) (x₀-x₁)