Answer:
The coefficient of kinetic friction 
Explanation:
From the question we are told that
The length of the lane is 
The speed of the truck is 
Generally from the work-energy theorem we have that

Here N is the normal force acting on the truck which is mathematically represented as
is the change in kinetic energy which is mathematically represented as
=>
=>

=> 
=> 
Two significant figures, the 6 and the 9
Answer:
acceleration = -15.3g
Explanation:
given data
speed = 6.00 m/s.
thickness = 12
moves the entire = 12.0 cm
solution
we will use here equation that is
v² - u² = 2 × a × s ........................1
here v = 0 is the final velocity and u = 6.0 m/s is initial velocity and s= 0.12 m is the distance covered and a is the acceleration
so we put here value and get acceleration
a = 
a = 
a = -150 m/s² ( negative sign means it is a deceleration )
and
acceleration in units of g
a = 
a = -15.3 g
C) electrical energy is transformed into heat energy
Answer:
F = 1618.65[N]
Explanation:
To solve this problem we use the following equation that relates the mass, density and volume of the body to the floating force.
We know that the density of wood is equal to 750 [kg/m^3]
density = m / V
where:
m = mass = 165[kg]
V = volume [m^3]
V = m / density
V = 165 / 750
V = 0.22 [m^3]
The floating force is equal to:
F = density * g * V
F = 750*9.81*0.22
F = 1618.65[N]