M1 descending
−m1g + T = m1a
m2 ascending
m2g − T = m2a
this gives :
(m2 − m1)g = (m1 + m2)a
a =
(m2 − m1)g/m1 + m2
= (5.60 − 2)/(2 + 5.60) x 9.81
= = 4.65m/s^2
Answer:
Newton
Explanation:
The earth attracts every body towards its centre. The force with which the earth attracts any body towards its centre, is called its weight.
It is a vector quantity.
It always acts towards the centre of earth.
The SI unit of Newton.
Answer:
Explanation:
mass of car, m = 1000 kg
initial velocity, u = 20 m/s
final velocity, v = 0 m/s
distance, s = 120 m
Let a be the acceleration of motion
use third equation of motion
v² = u² + 2 as
0 = 20 x 20 + 2 x a x 120
a = - 1.67 m/s²
Let F be the force
Force, F mass x acceleration
F = - 1000 x 1.67
F = - 1666.67 N
The direction of force is towards south and the magnitude of force is 1666.67 N.
the correct answer is 27 hours per week :) hope this helps
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>