A bathroom scales works due to gravity. Under normal
conditions, a reading can be obtained when your body is pushing some force on
the scale. However in this case, since you and the scale are both moving
downwards, so your body is no longer pushing on the scale. Therefore the answer
is:
<span>The reading will drop to 0 instantly</span>
I would say its a positive cgarge
Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Answer:
C. Both reach the bottom at the same time.
Explanation:
For a rolling object down an inclined plane , the acceleration is given below
a = g sinθ / (1 + k² / r² )
θ is angle of inclination , k is radius of gyration , r is radius of the cylinder
For cylindrical object
k² / r² = 1/2
acceleration = g sinθ /( 1 + 1/2 )
= 2 g sinθ / 3
Since it does not depend upon either mass or radius , acceleration of both the cylinder will be equal . Hence they will reach the bottom simultaneously.
<span>The minimum energy required for isomerization is 267 000 J/mol
</span>
The isomerization of cis-but-2-ene to trans-but-2-ene requires breaking of the π bond.
The bond energy of a C-C σ bond is 347 kJ/mol.
The bond energy of a C=C double bond (σ + π) is 614 kJ/mol.
So the bond energy of a π bond is (614 – 347) kJ/mol = 267 kJ/mol =
267 000 J/mol.