answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
2 years ago
12

. Two buses depart from Chicago, one going to New York and one to San Francisco. Each bus travels at a speed of 30 m/s. Do they

have equal velocities? Explain.
Physics
1 answer:
zaharov [31]2 years ago
3 0

Answer:

They don't have equal velocities

Explanation:

We have one bus travelling from Chicago to New York at 30 m/s and one bus travelling from Chicago to San Francisco at 30 m/s.

This is a cheat question. You need to remember that velocity  is a vector. Remember that a vector has a direction and a module. So, the answer will be true, if both buses meet both conditions (direction and module). Let's start to analyze:

Module: In this case is 30 m/s for both buses

Direction: In this case is where the buses are heading. One is going to New York, and one is going to San Francisco. So the directions are different.

As module and direction are not the same for both buses we can say that they don't have equal velocities.

You might be interested in
Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the sp
Dmitry_Shevchenko [17]

Answer:

Explanation:

a )

This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .

b ) The wavelength of a photon  is inversely proportional to its energy .  Photon  due to transition between n = 1 and n = 3 will have higher energy than

that due to transition between n = 2 and n = 5 . So the later photon ( B)  will have greater wavelength or photon  due to transition between n = 2 and n = 5 will have greater wavelength .

3 0
2 years ago
Find the intensity in decibels [i(db)] for each value of i. normal conversation: i = 106i0 i(db) = power saw a 3 feet: i = 1011i
White raven [17]

Answer:

Normal Conversation: i=106i0

i(dB)=60

Power saw a 3 feet: i=1011i0

i(dB)=110

Jet engine at 100 feet: i=1018i0

i(dB)=180

Explanation:

if these are the same as edge, then these are the answers! :)

8 0
2 years ago
Read 2 more answers
A 92-kg skier is sliding down a ski slope that makes an angle of 30 degrees above the horizontal direction. The coefficient of k
9966 [12]

Answer:

a = 4.05 m/s²

Explanation:

Known data

m= 92 kg  : mass of the  skier

θ =30°  :angle θ of the ski slope  with respect to the horizontal direction

μk= 0.10 : coefficient of kinetic friction

g = 9.8 m/s² : acceleration due to gravity

Newton's second law:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

We define the x-axis in the direction parallel to the movement of the block on the ramp and the y-axis in the direction perpendicular to it.

Forces acting on the skier

W: Weight of the skier : In vertical direction

N : Normal force : perpendicular to the ski slope

f : Friction force: parallel to the ski slope

Calculated of the W

W= m*g

W=  92kg* 9.8 m/s² = 901,6 N

x-y weight components

Wx= Wsin θ= 901,6 N *sin 30° = 450.8 N

Wy= Wcos θ = 901,6 N *cos 30° =780.8 N

Calculated of the N

We apply the formula (1)

∑Fy = m*ay    ay = 0

N - Wy = 0

N = Wy

N = 780.8 N

Calculated of the f

f = μk* N=  0.10*780.8 N  

f = 78.08 N

We apply the formula (1) to calculated acceleration of the skier:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

Wx - f = m*a

450.8- 78.08 = ( 92)*a

372.72 =  (92)*a

a = (372.72)/ (92)

a = 4.05 m/s²

6 0
2 years ago
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
2 years ago
A hockey puck slides off the edge of a table with an initial velocity of 23.2 m/s and experiences no air resistance. The height
Dennis_Churaev [7]

Answer:

15.1°

Explanation:

The horizontal velocity of the hockey puck is constant during the motion, since there are no forces acting along this direction:

v_x = 23.2 m/s

Instead, the vertical velocity changes, due to the presence of the acceleration due to gravity:

v_y(t)= v_{y0} -gt (1)

where

v_{y0}=0 is the initial vertical velocity

g = 9.8 m/s^2 is the gravitational acceleration

t is the time

Since the hockey puck falls from a height of h=2.00 m, the time it needs to reach the ground is given by

h=\frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(2.00 m)}{9.8 m/s^2}}=0.64 s

Substituting t into (1) we find the final vertical velocity

v_y = -(9.8 m/s^2)(0.64 s)=-6.3 m/s

where the negative sign means that the velocity is downward.

Now that we have both components of the velocity, we can calculate the angle with respect to the horizontal:

tan \theta = \frac{|v_y|}{v_x}=\frac{6.3 m/s}{23.2 m/s}=0.272\\\theta = tan^{-1} (0.272)=15.1^{\circ}

6 0
2 years ago
Other questions:
  • Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.
    7·1 answer
  • What volume in milliliters will 0.00922 g of h2 gas occupy at stp?
    12·1 answer
  • At what condition does a body become weightless at the equator?
    8·1 answer
  • Which voice can produce a pitch that has a speed of 343 m/s and a wavelength of 0.68 m? Check all that apply.
    12·2 answers
  • Jack (mass 52.0 kg ) is sliding due east with speed 8.00 m/s on the surface of a frozen pond. he collides with jill (mass 49.0 k
    9·1 answer
  • A 30.0-kg child sits on one end of a long uniform beam having a mass of 20.0 kg, and a 40.0-kg child sits on the other end. The
    8·1 answer
  • The Lamborghini Huracan has an initial acceleration of 0.75g. Its mass, with a driver, is 1510 kg.
    13·1 answer
  • Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm thick. The diffusion coefficient of wat
    7·1 answer
  • A heavy turntable, used for rotating large objects, is a solid cylindrical wheel that can rotate about its central axle with neg
    10·1 answer
  • A student redid the experiment of mixing room-temperature water and warm
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!