answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
2 years ago
4

Carl is eating lunch at his favorite cafe when his friend Isaac calls and says he wants to meet him. Isaac is calling from a cit

y 155 miles155 miles away, and wants to meet Carl somewhere between the two locations. Isaac says he will start driving right away, but Carl needs 31.0 min31.0 min to finish his lunch before he can begin driving. Isaac plans to drive at 70.0 mph70.0 mph , and Carl plans to drive at 50.0 mph50.0 mph . Ignore acceleration and assume the highway forms a straight line. How long will Isaac be driving before he meets Carl?
Physics
2 answers:
Svetlanka [38]2 years ago
6 0

Issac will drive for \boxed{1.507\text{ hr}} before he meets carl.

Further Explanation:

The acceleration of the driving is ignored. It means that the motion of the cars is purely linear on the highways.

Given:

The distance between Carl and Issac is 155\text{ miles}.

The speed of Carl is 50\text{ mph}.

The speed of Issac is 70\text{ mph}.

The time taken by Carl to finish lunch before starting to drive is 31\text{ min}.

Concept:

Since Carl is eating lunch and he will start after 31 minutes, Issac will cover some distance within this time.

The distance covered by Issac before Carl starts to drive is,

\begin{aligned}d_1&=\text{speed}\times\text{time}\\&=50\text{ mph}\times\left(\dfrac{31}{60}\right)\text{hr}\\&=36.16\text{ mile}\end{aligned}

Now after Issac has covered 36.16\text{ miles}, Carl starts to drive. So, the distance left between Carl and Issac to be covered after carl starts to drive is,

\begin{aligned}d&=155\text{ miles}-36.16\text{ miles}\\&=118.84\text{ miles}\end{aligned}

So, now the sum of the distances covered by Issac and Carl in time t should be equal to the 118.84\text{ miles}.

\begin{aligned}D_{\text{Issac }}+D_{\text{Carl}}&=118.84\text{ miles}\\(V_{Issac}\times t)+(V_{Carl}\times t)&=118.84\text{ miles}\end{aligned}

Substituting the values of speed of Issac and Carl,

\begin{aligned}(70\times t)+(50\times t)&=118.84\text{ miles}\\120t&=118.84\text{ miles}\\t&=\frac{118.84}{120}\text{ hr}\\t&=0.990\text{ hr}\end{aligned}

So, Issac and Carl meet after 0.990\text{ hr} after Carl starts driving.

So, the time for which Issac has been driving is,

\begin{aligned}T_{\text{ Issac}}&=0.990\text{ hr}+\dfrac{31}{60}\text{ hr}\\&=(0.990+0.516)\text{ hr}\\&=1.507\text{ hr}\end{aligned}

Thus, Issac will drive for \boxed{1.507\text{ hr}} before he meets carl.

Learn More:

1. Acceleration of the book due to force applied brainly.com/question/9719731

2. A toy train rolls around a horizontal 1.0-m-diameter track brainly.com/question/9575487

3. Velocity is the combination of which of the following brainly.com/question/1890447

Answer Details:

Grade: College

Subject: Physics

Chapter: Linear motion in one dimension

Keywords:

Carl, Issac, Speed, meet, 155 miles, eating lunch, 70 mph, 50 mph, 31 min, between two locations, highway forms a straight line.

KatRina [158]2 years ago
3 0

Answer:

1.507 h

Explanation:

We can think that they move at constant speed, so their positions will follow

X(t) = Xo + v * t

However Carl will start moving 31 minutes later, so we can adjust the equation like this

X(t) = Xo + v * (t - t1)

Where t1 is the time at which each of them will start moving, 0 for Isaac since he starts driving right away, and 31 minutes (0.5167 h) for Carl

Also, we can considre the initial position of Carl to be 0 and his speed to be 50, while Isaac will have an initial position of 155 and a speed of -70 (negative because he is driving towards the origin of coordinates).

Then we have these two equations:

x(t) = 0 + 50 * (t - 0.5167)

x(t) = 155 - 70 * t

These are equations of lines, the point where they intersect determines the place and time they meet.

50 * (t -0.5167) = 155 - 70 * t

50 * t - 25.83 = 155 - 70 * t

120 * t = 180.83

t = 180.83 / 120 = 1.507 h

This is the time Isaac will be driving

You might be interested in
Derive an expression for the total mechanical energy of the system as the monkey reaches the top of the motion, Etop, in terms o
ipn [44]

Answer:

U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

Explanation:

Given:

- The extension in spring @ equilibrium = x m

- The spring constant = k

- The amount of distance pulled down = d

- mass of the toy = m

Find:

- The total mechanical energy E_top at the top position h_max in terms of the available variables.

Solution:

- First we need to determine the types of Energy that are in play:

- The Elastic potential Energy E_p in a spring is given:

                              E_p: 0.5 * k * (ext)

- In our case when the toy at the top most position h_max will have a net extension ext, by summing displacement of spring:

             ext = Equilibrium + distance pulled - h_max = (x + d - h_max)

Hence, the elastic potential energy will be:

                              E_p = 0.5 * k *(x + d - h_max)^2

- The gravitational potential energy E_g is given by:

                              E_g = m*g*h_max

Where, bottom most position is taken as reference (datum).

- The kinetic Energy E_k is given by:

                              E_k = 0.5*m*v_top^2

- Since we know that the maximum height is reached when velocity is zero

Hence,                   E_k = 0.5*m*0^2 = 0.

The total Energy of the system U is sum of all energies and play:

                               U = E_p + E_k + E_g

                               U =  0.5 * k *(x + d - h_max)^2 + m*g*h_max

8 0
2 years ago
Two objects are placed in thermal contact and are allowed to come to equilibrium in isolation. the heat capacity of object a is
Harman [31]
Given:
Ca = 3Cb                      (1)
where
Ca =  heat capacity of object A
Cb =  heat capacity f object B

Also,
Ta = 2Tb                     (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.

Let
Tf =  final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.

Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb)           (3)

Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb

Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb

Answer:
T_{f} =( \frac{1+6k}{1+3k} )T_{b}= \frac{1}{2}( \frac{1+6k}{1+3k})T_{a}
where
k= \frac{M_{a}}{M_{b}} 
7 0
2 years ago
A drag racer accelerates from rest at an average rate of +13.2 mls for a distance of 100. m. The driver coasts for 0.5 then uses
gtnhenbr [62]

Complete Question:

A drag racer accelerates from rest at an average rate of +13.2 m/s² for a distance of 100. m. The driver coasts for 0.5 s then uses the brakes and parachute to decelerate until the end of the track. If the total length of the track is 180 m, what minimum deceleration rate must the racer have in order to stop prior to the the end of the track?

Answer:

-31.92 m/s²

Explanation:

The drag races do a retiling uniform variated movement. There are 3 steps in the movement, first, it accelerates from rest until 100 m, second it coasts to 0.5 s, and then it decelerates. So, let's analyze each one of the steps:

Step 1

The initial velocity is v0 = 0 (because it was at rest), the acceleration is +13.2 m/s², and the distance ΔS = 100.0 m, so the final velocity, v, is:

v² = v0² + 2aΔS

v² = 2*13.2*100

v² = 2640

v = √2640

v = 51.38 m/s

Step 2

Know it's initial velocity is 51.38 m/s, it take 0.5s, and has the same acceleration, so, after 0.5 s, the velocity will be:

v = v0 + at

v = 51.38 + 13.2*0.5

v = 57.98 m/s

Thus, the distance it travels is:

v² = v0² + 2aΔS

57.98² = 51.38² + 2*13.2*ΔS

3361.6804 = 2639.9044 + 26.4ΔS

26.4ΔS = 721.776

ΔS = 27.34 m

Step 3

The initial velocity of the drag racer is 57.98 m/s, and it travels the final distance of the track: 180 - 100 - 27.34 = 52.66 m. So, when it stops, its final velocity will be 0. The minimum deceleration must be the one that it would stop at the end of the track (less than that it would cross the final track):

v² = v0² + 2aΔS

0 = 57.98² + 2a*52.66

-105.32a = 3361.6804

a = - 31.92 m/s²

4 0
2 years ago
A baseball catcher puts on an exhibition by catching a 0.15-kg ball dropped from a helicopter at a height of 101 m. What is the
yaroslaw [1]

Answer:

The speed of the ball 1.0 m above the ground is 44 m/s (Answer A).

Explanation:

Hi there!

To solve this problem, let´s use the law of conservation of energy. Since there is no air resistance, the only energies that we should consider is the gravitational potential energy and the kinetic energy. Because of the conservation of energy, the loss of potential energy of the ball must be compensated by a gain in kinetic energy.

In this case, the potential energy is being converted into kinetic energy as the ball falls (this is only true when there are no dissipative forces, like air resistance, acting on the ball). Then, the loss of potential energy (PE) is equal to the increase in kinetic energy (KE):

We can express this mathematically as follows:

-ΔPE = ΔKE

-(final PE - initial PE) = final KE - initial KE

The equation of potential energy is the following:

PE = m · g · h

Where:

PE = potential energy.

m = mass of the ball.

g = acceleration due to gravity.

h = height.

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

KE = kinetic energy.

m = mass of the ball.

v = velocity.

Then:

-(final PE - initial PE) = final KE - initial KE          

-(m · g · hf - m · g · hi) = 1/2 · m · v² - 0     (initial KE = 0 because the ball starts from rest)  (hf = final height, hi = initial height)

- m · g (hf - hi) = 1/2 · m · v²

2g (hi - hf) = v²

√(2g (hi - hf)) = v

Replacing with the given data:

√(2 · 9.8 m/s²(101 m - 1.0 m)) = v

v = 44 m/s

The speed of the ball 1.0 m above the ground is 44 m/s.

3 0
2 years ago
Hicham El Guerrouj of Morocco holds the world record in the 1500 m running race. He ran the final 400 m in a time of 51.9 s.
konstantin123 [22]

Answer: His average speed in mph over the last 400 m is 7.7 m/s.

Explanation:

Given: Hicham El Guerrouj of Morocco holds the world record in the 1500 m running race. He ran the final 400 m in a time of 51.9 s.

We know that , speed = \dfrac{distance}{time}

Here , distance = 400m and time = 51.9 s

Then, speed =  \dfrac{400}{51.9}\approx7.7\ m/s

Hence, his average speed in mph over the last 400 m is 7.7 m/s.

5 0
2 years ago
Other questions:
  • Complete the passage to identify potential and kinetic energy. A rock resting on the top of a hill has energy, while a rock roll
    10·2 answers
  • In which landscape region of new york is the most resistant bedrock found?
    9·2 answers
  • A bird flies at an average velocity of 3.60 m/s for 18.4 s. How far does it travel? (unit=m)
    10·1 answer
  • What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22
    15·1 answer
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • A bucket of mass m is hanging from the free end of a rope whose other end is wrapped around a drum (radius R, mass M) that can r
    8·1 answer
  • A small ball is attached to the lower end of a 0.800-m-long string, and the other end of the string is tied to a horizontal rod.
    12·1 answer
  • The figure above represents a stick of uniform density that is attached to a pivot at the right end and has equally spaced marks
    13·1 answer
  • 1. A diffraction grating with 5.000 x 103 lines/cm is used to examine the sodium
    8·2 answers
  • Your eye is designed to work in air. Surrounding it with water impairs its ability to form images. Consequently, scuba divers we
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!