answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
2 years ago
13

What are two parts that make up a vector

Physics
1 answer:
mojhsa [17]2 years ago
3 0

Answer:

Vectors have both magnitude and direction.

You might be interested in
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track with
Lana71 [14]

Answer:

   h = 2 R (1 +μ)

Explanation:

This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the

let's use the mechanical energy conservation agreement

starting point. Lower, just at the curl

       Em₀ = K = ½ m v₁²

final point. Highest point of the curl

        Em_{f} = U = m g y

Find the height y = 2R

      Em₀ = Em_{f}

      ½ m v₁² = m g 2R

       v₁ = √ 4 gR

Any speed greater than this the body remains in the loop.

In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law

X axis

    -fr = m a                      (1)

Y Axis  

      N - W = 0

      N = mg

the friction force has the formula

     fr = μ  N

     fr = μ m g

    we substitute 1

    - μ mg = m a

     a = - μ g

having the acceleration, we can use the kinematic relations

    v² = v₀² - 2 a x

    v₀² = v² + 2 a x

the length of this zone is x = 2R

    let's calculate

     v₀ = √ (4 gR + 2 μ g 2R)

     v₀ = √4gR( 1 + μ)

this is the speed so you must reach the area with fricticon

finally have the third part we use energy conservation

starting point. Highest on the ramp without rubbing

     Em₀ = U = m g h

final point. Just before reaching the area with rubbing

     Em_{f} = K = ½ m v₀²

      Em₀ = Em_{f}

     mgh = ½ m 4gR(1 + μ)

       h = ½ 4R (1+ μ)

       h = 2 R (1 +μ)

7 0
2 years ago
The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change
mihalych1998 [28]

Answer:

a) 1.2*10^-7 m

b) 1.0*10^-7 m

c) 9.7*10^-8 m

d) ultraviolet region

Explanation:

To find the different wavelengths you use the following formula:

\frac{1}{\lambda}=R_H(1-\frac{1}{n^2})

RH: Rydberg constant = 1.097 x 10^7 m^−1.

(a) n=2

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(2)^2})=8227500m^{-1}\\\\\lambda=1.2*10^{-7}m

(b)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(3)^2})=9751111,1m^{-1}\\\\\lambda=1.0*10^{-7}m

(c)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(4)^2})=10284375m^{-1}\\\\\lambda=9.7*10^{-8}m

(d) The three lines belong to the ultraviolet region.

8 0
2 years ago
In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
qaws [65]

Answer:

The distance between both cars is 990 m

Explanation:

The equations for the position and the velocity of an object moving in a straight line are as follows:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a * t

where:

x = position of the car at time "t"

x0 = initial position

v0 = initial speed

t = time

a = acceleration

v = velocity

First let´s find how much time it takes the driver to come to stop (v = 0).  We will consider the origin of the reference system as the point at which the driver realizes she must stop. Then x0 = 0

With the equation of velocity, we can obtain the acceleration and replace it in the equation of position, knowing that the position will be 250 m at that time.

v = v0 + a*t

v-v0 / t = a

0 m/s - 71.0 m/s / t =a

-71.0 m/s / t = a

Replacing in the equation for position:

x = v0* t +1/2 * a * t²

250 m = 71.0 m/s * t + 1/2 *(-71.0 m/s / t) * t²

250 m = 71.0 m/s * t - 1/2 * 71.0 m/s * t

250m = 1/2 * 71.0m/s *t

<u>t = 2 * 250 m / 71.0 m/s = 7.04 s</u>

It takes the driver 7.04 s to stop.

Then, we can calculate how much time it took the driver to reach her previous speed. The procedure is the same as before:

v = v0 + a*t

v-v0 / t = a      now v0 = 0 and v = 71.0 m/s

(71.0 m/s - 0 m/s) / t = a

71.0 m/s / t =a

Replacing in the position equation:

x = v0* t +1/2 * a * t²      

390 m = 0 m/s * t + 1/2 * 71.0 m/s / t * t²       (In this case, the initial position is in the pit, then x0 = 0 because it took 390 m from the pit to reach the initial speed).

390m * 2 / 71.0 m/s = t

<u>t = 11.0 s</u>

In total, it took the driver 11.0s + 5.00 s + 7.04 s = 23.0 s to stop and to reach the initial speed again.

In that time, the Mercedes traveled the following distance:

x = v * t = 71.0 m/s * 23.0 s = 1.63 x 10³ m

The Thunderbird traveled in that time 390 m + 250 m = 640 m.

The distance between the two will be then:

<u>distance between both cars = 1.63 x 10³ m - 640 m = 990 m.  </u>

3 0
2 years ago
Recall the previous question and the scenario with Zamir and Talia finding their way through a maze. Why is their displacement t
Ad libitum [116K]

Sample Response: Zamir and Talia’s total distances are different because they walked different paths in the maze. Zamir took a longer path. However, they had the same displacement because they both ended at the same position.

4 0
2 years ago
Read 2 more answers
A car is traveling at 20.0 m/s on tires with a diameter of 70.0 cm. The car slows down to a rest after traveling 300.0 m. If the
cupoosta [38]

Answer: deceleration of 1.904\ rad/s^2

Explanation:

Given

Car is traveling at a speed of u=20 m/s

The diameter of the car is d=70 cm

It slows down to rest in 300 m

If the car rolls without slipping, then it must be experiencing pure rolling i.e. a=\alpha \cdot r

Using the equation of motion

v^2-u^2=2as\\

Insert v=0,u=20,s=300

0-(20)^2=2\times a\times 300\\\\a=\dfrac{-400}{600}\\\\a=-\dfrac{2}{3}\ m/s^2

Write acceleration as a=\alpha \cdot r

-\dfrac{2}{3}=\alpha \times 0.35\\\\\alpha =-\dfrac{2}{1.05}\\\\\alpha =-1.904\ rad/s^2

So, the car must be experiencing the deceleration of 1.904\ rad/s^2.

4 0
2 years ago
Other questions:
  • Complete the sentence with the word "element" or "compound." O is a(n) and H2O2 is a(n) .
    11·2 answers
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • Urban cities like Atlanta have to contend with a serious problem like pollution. Drivers in California are testing out a car tha
    7·1 answer
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo
    6·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • While playing basketball in PE class, Logan lost his balance after making a lay-up and colliding with the padded wall behind the
    11·1 answer
  • Three identical resistors are connected in series to a battery. If the current of 12 A flows from the battery, how much current
    9·1 answer
  • The 500 pages of a book have a mass of 2.50 kg. What is the mass of each page A in kg B in mg?
    5·1 answer
  • Two masses, each having a value of M, are vibrating vertically on a spring with a Hooke's law constant, k. At the lowest point o
    9·1 answer
  • Study the diagram and calculate the effort required to balance the load​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!