answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
2 years ago
10

A car travels down a straight country road that leads over hills and through valleys. On one particular stretch of road, the car

encounters a hill that can be approximated as the top of a circle with a radius rh = 109 m. Later, the car comes to a dip with a radius of curvature rd = 77 m. Assume that the car maintains a constant speed of v = 23 m/s as it goes over the hill and through the dip.a)The actual weight of the driver, as measured on a flat stretch of road, is 535 N. What is the apparent weight of the driver at the top of the hill?b) What is the apparent weight of the driver at the bottom of the dip?
Physics
1 answer:
Whitepunk [10]2 years ago
3 0

Answer:

a)270N; b)910N

Explanation:

The apparent weight is the force felt by the person, which in these cases is the normal force, or the force that the ground, or in this case, the car, exerts on the person.

Both at the top of the hill and the bottom of the dip the sum of the normal force and the weight must be the centripetal force F, since the stretch there must be a circle. For the hill we will have N_h-W=-F_h, where h stands for hill and the centripetal force must be downwards, and for the dip N_d-W=+F_d, where d stands for dip and the centripetal force must be upwards.

The equation for centripetal force is F=m\frac{v^{2}}{r}, and taking into account that W=mg, where g=9.8m/s^2 we have everything we need.

First we calculate N_h=W-F_h=W-\frac{W}{g}\frac{v^{2}}{r_h}, which gives 270N, and then N_d=W+F_d=W+\frac{W}{g}\frac{v^{2}}{r_d}, which gives 910N.

You might be interested in
A composite wall separates combustion gases at 2400°C from a liquid coolant at 100°C, with gas and liquid-side convection coeffi
evablogger [386]

Answer:

\text{heat loss} = 24864.05 \  W/m^2

Explanation:

If

  • T_1, T_2 are temperatures of gasses and liquid in Kelvins,
  • t_1 and t_2 are thicknesses of gas layer and steel slab in meters,
  • h_1, h_2 are convection coefficients gas and liquid in W/m^2 \cdot K,
  • R_c is the contact resistance in m^2 \cdot K/W,
  • and k_1, k_2 are thermal conductivities of gas and steel in W/m \cdot K,

then: part(a):

\text{heat loss } =  \frac{T_1 - T_2} { \frac{1}{h_1} + \frac{t_1}{t_2} + R_c + \frac{t_2}{k_2} + \frac{1}{h_2}}

using known values:

\text {heat loss} = 2486.05 W/m^2

part(b): Using the rate equation :

\text {heat loss} = h_1 (T_1 - T_{s1})

the surface temperature T_{s1} = 1678.438 \ K

and T_{c1} = T_{s1} - \frac {t_1 (\text{heat loss})}{k_1} = 1664.560 \ K

Similarly

T_{c2} = T_{c1} - R_c (\text{heat loss}) = 421.357 \ K

T_{s2} = T_{c2} - \frac {t_2 (\text{heat loss})}{ k_2} = 397.864 \ K

The temperature distribution is shown in the attached image

3 0
2 years ago
You stand on a bathroom scale in a moving elevator. what happens to the scale reading if the cable holding the elevator suddenly
Viefleur [7K]

A bathroom scales works due to gravity. Under normal conditions, a reading can be obtained when your body is pushing some force on the scale. However in this case, since you and the scale are both moving downwards, so your body is no longer pushing on the scale. Therefore the answer is:

<span>The reading will drop to 0 instantly</span>

7 0
2 years ago
Read 2 more answers
A box of mass 5.0 kg is accelerated from rest by a force across a floor at a rate of 2.0 m/s2 for 7.0 s. find the net work done
Aleks04 [339]
W=Fd. Force is not given so we solve for it. F=ma, m=5kg, a=2m/s^2, F=10N. Distance is not given so we solve for it, x=.5a(t^2)=.5(2)(7x7)=49m. F=10N, d=49m, W=490J.
5 0
2 years ago
Read 2 more answers
A 35 g steel ball is held by a ceiling-mounted electromagnet 4.0 m above the floor. A compressed-air cannon sits on the floor, 4
HACTEHA [7]

Answer:

7.9 m/s

Explanation:

When both balls collide, they have spent the same time for their motions.

Motion of steel ball

This is purely under gravity. It is vertical.

Initial velocity, <em>u </em>= 0 m/s

Distance, <em>s</em> = 4.0 m - 1.2 m = 2.8 m

Acceleration, <em>a</em> = g

Using the equation of motion

s = ut+\frac{1}{2}at^2

2.8 \text{ m} = 0+\dfrac{gt^2}{2}

t = \sqrt{\dfrac{5.6}{g}}

Motion of plastic ball

This has two components: a vertical and a horizontal.

The vertical motion is under gravity.

Considering the vertical motion,

Initial velocity, <em>u </em>= ?

Distance, <em>s</em> = 1.2 m

Acceleration, <em>a</em> = -<em>g                   </em> (It is going up)

Using the equation of motion

s = ut+\frac{1}{2}at^2

1.2\text{ m} = ut-\frac{1}{2}gt^2

Substituting the value of <em>t</em> from the previous equation,

1.2\text{ m} = u\sqrt{\dfrac{5.6}{g}}-\dfrac{1}{2}\times g\times\dfrac{5.6}{g}

u\sqrt{\dfrac{5.6}{g}} = 4.0

Taking <em>g</em> = 9.8 m/s²,

u = \dfrac{4.0}{0.756} = 5.29 \text{ m/s}

This is the vertical component of the initial velocity

Considering the horizontal motion which is not accelerated,

horizontal component of the initial velocity is horizontal distance ÷ time.

u_h = \dfrac{4.4\text{ m}}{0.756\text{ s}} = 5.82\text{ m/s}

The initial velocity is

v_i = \sqrt{u^2+u_h^2} = \sqrt{(5.29\text{ m/s})^2+(5.82\text{ m/s})^2} = 7.9 \text{ m/s}

4 0
2 years ago
Which of these shows unbalanced forces at work on an object? A. an ice skater turning as he skates around an ice rink B. a bicyc
rosijanka [135]
I’m pretty sure the answer is a
4 0
2 years ago
Read 2 more answers
Other questions:
  • An ocean liner is cruising at 10 meters/second and is about to approach a stationary ferryboat. A parcel is released from the oc
    9·1 answer
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • The Lamborghini Huracan has an initial acceleration of 0.75g. Its mass, with a driver, is 1510 kg.
    13·1 answer
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    7·1 answer
  • A 26 foot ladder is lowered down a vertical wall at a rate of 3 feet per minute. The base of the ladder is sliding away from the
    10·1 answer
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    9·1 answer
  • Four distinguishable particles move freely in a room divided into octants (there are no actual partitions). Let the basic states
    6·1 answer
  • For incident ray C, the angle of refraction is 90°. The refracted ray C has the smallest amount of energy of any refracted ray.
    11·1 answer
  • Athlete mesert defar runs at 10m/s. how long will it take her to go 1 minute ​
    5·1 answer
  • A projectile of mass 0.2 kg and an initial velocity of 50 m/s collides with the end of a blade attached to a turbine. The rotati
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!