Answer:
b ≈ 64 Kg/s
Explanation:
Given
Fd = −bv
m = 2.5 kg
y = 6.0 cm = 0.06 m
g = 9.81 m/s²
The object in the pan comes to rest in the minimum time without overshoot. this means that damping is critical (b² = 4*k*m).
m is given and we find k from the equilibrium extension of 6.0 cm (0.06 m):
∑Fy = 0 (↑)
k*y - W = 0 ⇒ k*y - m*g = 0 ⇒ k = m*g / y
⇒ k = (2.5 kg)*(9.81 m/s²) / (0.06 m)
⇒ k = 408.75 N/m
Hence, if
b² = 4*k*m ⇒ b = √(4*k*m) = 2*√(k*m)
⇒ b = 2*√(k*m) = 2*√(408.75 N/m*2.5 kg)
⇒ b = 63.9335 Kg/s ≈ 64 Kg/s
Answer: a) The Answer to the question is option a) None of it.
Explanation:
The reason is because according to the law of conservation of energy Energy can neither be created nor destroyed but can be transformed from one form to the other. Therefore none of the kinetic energy was dissipated, rather it was transformed to another form of energy.
Answer:
-5.1 kg m/s
Explanation:
Impulse is the change in momentum.
Change in momentum= final momentum - initial momentum=m
+m
Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)
Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)
Answer:
Your answer would be
A person 40 cm- blows into the left end of the pipe to eject the marshmallow from the right end. ... A strain of sound waves is propagated along an organ pipe and gets reflected from an. play · like-icon ... The velocity of sound in air is 340ms^(-1). ... The two pipes are submerged in sea water, arranged as shown in figure. Pipe.Explanation:
I belive this is the answer sorry if im wrong!
Answer:
560 kg m/s
Explanation:
First of all, we have to find the velocity of the runner, which is given by the ratio between the distance covered (400 m) and the time taken (50 s):

And now we can calculate the average momentum of the runner, which is equal to the product between the mass of the runner (70 kg) and its velocity, that we have previously calculated:
