Answer: 
Explanation:

Where;
a = acceleration
V2 = final velocity
V1 = initial velocity
t = time
If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.



Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
Answer:
height is 69.68 m
Explanation:
given data
before it hits the ground = 46 % of entire distance
to find out
the height
solution
we know here acceleration and displacement that is
d = (0.5)gt² ..............1
here d is distance and g is acceleration and t is time
so when object falling it will be
h = 4.9 t² ....................2
and in 1st part of question
we have (100% - 46% ) = 54 %
so falling objects will be there
0.54 h = 4.9 (t-1)² ...................3
so
now we have 2 equation with unknown
we equate both equation
1st equation already solve for h
substitute h in the second equation and find t
0.54 × 4.9 t² = 4.9 (t-1)²
t = 0.576 s and 3.771 s
we use here 3.771 s because 0.576 s is useless displacement in the last second before it hits the ground is 46 % of the entire distance it falls
so take t = 3.771 s
then h from equation 2
h = 4.9 t²
h = 4.9 (3.771)²
h = 69.68 m
so height is 69.68 m
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020