Answer
given,
Mass of Kara's car = 1300 Kg
moving with speed = 11 m/s
time taken to stop = 0.14 s
final velocity = 0 m/s
distance between Lisa ford and Kara's car = 30 m
a) change in momentum of Kara's car
Δ P = m Δ v


Δ P = - 1.43 x 10⁴ kg.m/s
b) impulse is equal to change in momentum of the car
I = - 1.43 x 10⁴ kg.m/s
c) magnitude of force experienced by Kara
I = F x t
I is impulse acting on the car
t is time
- 1.43 x 10⁴= F x 0.14
F = -1.021 x 10⁵ N
negative sign represents the direction of force
Answer:

Explanation:
Aceleration is a change on the velocity of the object in a given time.
For this case: the initial velocity is

and the final velocity is :

so, the change in velocity is:

and the change in time , according to the problem:

So, the aceleration is:

Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g
Answer:
a) 14.2 atm
b) 4.46 atm
c) 1.06 atm
Explanation:
For an ideal gas,
PV = nRT
P = pressure of the gas
V = volume occupied by the gas
n = number of moles of the gas
R = molar gas constant = 0.08206 L.atm/mol.K
T = temperature of the gas in Kelvin
a) For HF,
P =?, V = 2.5L, n = 1.35 moles, T = 320K
P = 1.35 × 0.08206 × 320/2.5
P = 14.2 atm
b) For NO₂
P =?, V = 4.75L, n = 0.86 moles, T = 300K
P = 0.86 × 0.08206 × 300/4.75
P = 4.46 atm
c) For CO₂
P =?, V = 5.5 × 10⁴ mL = 55L, n = 2.15 moles, T = 57°C = 330K
P = 2.15 × 0.08206 × 330/55
P = 1.06 atm
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m