Weight of the carriage 
Normal force 
Frictional force 
Acceleration 
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with
, force of
acting vertically downward.Both are downward and Normal is upward so Normal force 
- Normal force (N)

- Frictional force (f)

To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that
and
component of forces.
So Fnet = Fy(Horizontal) - f(friction) 
- Acceleration (a) =

So we have the weight of the carriage, normal force,frictional force and acceleration.
<span>10.3 cm
The wavelength will be the distance that light travels in 1 second divided by the frequency of the radiation. Since the over operates at 2.60 ghz, the frequence is 2.6 billion times per second, or 2.60 x 10^9. The speed of light is defined as 299792458 m/s exactly. So
299792458 m/s / 2.60 x 10^9 1/s = 0.10337671 m = 10.337671 cm
Since we only have 3 significant digits, the answer rounds to 10.3 cm</span>
Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Answer:
Approximately
.
Explanation:
The formula for the kinetic energy
of an object is:
,
where
is the mass of that object, and
is the speed of that object.
Important: Joule (
) is the standard unit for energy. The formula for
requires two inputs: mass and speed. The standard unit of mass is
while the standard unit for speed is
. If both inputs are in standard units, then the output (kinetic energy) will also be in the standard unit (that is: joules,
Convert the unit of the arrow's mass to standard unit:
.
Initial
of this arrow:
.
That's the same as the energy output of this bow. Hence, the efficiency of energy transfer will be:
.
Answer:
South and West
Explanation:
Those people are pushing the hardest. It will move south faster than it moves west.