Answer:
x + 2y = 8.
Step-by-step explanation:
Line goes through (-4, 0) and (4, -4).
The slope is (-4 - 0) / (4 - -4) = -4 / (4 + 4) = -4 / 8 = -1/2.
Since we are looking for the equation of the line parallel to that line, the slope will be the same.
We have an equation of y = -1/2x + b. We have a point at (2, 3). We can then say that y = 3 when x = 2.
3 = (-1/2) * 2 + b
b - 1 = 3
b = 4.
So, we have y = -1/2x + 4.
1/2x + y = 4
x + 2y = 8.
Hope this helps!
-115
Using the arithmetic formula, your equation appears as so:
an = 15 + (27 - 1) - 5
15 being the first number in the sequence, 27 being the number you're trying to find, and -5 being the common difference.
This will give you the answer of -115.
Hope this helps!
20%
This is because 20 and it's opposite -20 is 40. (20 - -20 = 40). Then 40 is 20% of 200.
Answer: 23 y 24 ( ó -23 y -24)
Step-by-step explanation:
Dos números consecutivos se escriben como:
n y (n + 1)
done n es un numero entero.
Entonces "El producto de dos números consecutivos es 552"
Se escribe como:
n*(n + 1) = 552
n^2 + n = 552
n^2 + n - 552 = 0
Tenemos una cuadrática, las posibles soluciones son obtenidas con la formula de Bhaskara.

Las dos soluciones son.
n = (-1 - 47)/2 = -48/2 = -24
n = (-1 + 47)/2 = 46/2 = 23
Si tomamos la primer solución, n = -24
Entonces los dos números consecutivos son:
n = -24
(n + 1) = -23
Si n = 23 entonces
n + 1 = 24
Lo cual tiene sentido, por que lo único que cambia son los signos, los cuales se cancelarían en la multiplicación.
Given:
It is given that surface area must be less than 150 cm².
Solution:
The Maximum Volume With Total Surface Area Less than 150 cm² is shown in the table.
From the table, it can be concluded that for r=3.00 cm and h=4.95 cm the surface area will be less than 150 cm² and the volume will be the maximum.

Calculate the volume.

Hence, the required dimensions are r=3.00 cm and h=4.95 cm.