answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
2 years ago
11

A cellist tunes the C string of her instrument to a fundamental frequency of 65.4 Hz . The vibrating portion of the string is 0.

600 m long and has a mass of 14.4 g .
What is μ, the mass per unit length of the string?
To determine the wave speed from purely kinematic quantities, you need to know the wavelength of the wave. What is the wavelength λ of the fundamental mode in the C string of the cello?
Physics
1 answer:
Simora [160]2 years ago
5 0

Explanation:

Given that,

Fundamental frequency of the string, f = 65.4 Hz

Length of the string, l = 0.6 m

Mass, m = 14.4 g = 0.0144 kg

(a) Let \mu is the mass per unit length of the string. It can be calculated as :

\mu=\dfrac{m}{l}

\mu=\dfrac{0.0144\ kg}{0.6\ m}

\mu=0.024\ kg/m

(b) If f is the fundamental frequency of the string, the wavelength of the fundamental mode is given by :

l=\dfrac{n\lambda}{2}

\lambda=\dfrac{2l}{n}

n = 1        

\lambda=2l=2\times 0.6\ m

\lambda=1.2\ m

Hence, this is the required solution.

You might be interested in
A skydiver is using wind to land on a target that is 50 m away horizontally. The skydiver starts from a height of 70 m and is fa
elena55 [62]

Answer:

Answer:

15.67 seconds

Explanation:

Using first equation of Motion

Final Velocity= Initial Velocity + (Acceleration * Time)  

v= u + at

v=3

u=50

a= - 4 (negative acceleration or deceleration)  

3= 50 +( -4 * t)

-47/-4 = t

Time = 15.67 seconds

6 0
2 years ago
If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is ha
Crank

Answer:

false.

Explanation:

Ok, we define average velocity as the sum of the initial and final velocity divided by two.

Remember that the velocity is a vector, so it has a direction.

Then when she goes from the 1st end to the other, the velocity is positive

When she goes back, the velocity is negative

if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:

AV = (V + (-V))/2  = 0

While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.

So we already can see that the average velocity will not be equal to half of the average speed.

The statement is false

4 0
2 years ago
An iron ball and an aluminum ball of mass 100 g each are heated to the same temperature and then cooled to a temperature of 20°C
Mekhanik [1.2K]
As the temperature changes and their masses are the same, heat lost by the balls is directly proportional to their specific heat values. The heat lost by the aluminum ball is higher implies aluminum has higher specific heat.
4 0
2 years ago
A group of science and engineering students embarks on a quest to make an electrostatic projectile launcher. For their first tri
vekshin1

Electric charge on the plastic cube: 1.3\cdot 10^{-7}C

Explanation:

The electric potential around a charged sphere (such as the Van der Graaf) generator is given by

V(r)=\frac{kQ}{r}

where

k is the Coulomb's constant

Q is the charge on the sphere

r is the distance from the centre of the sphere

Here we have:

V = 200,000 V on the surface of the sphere, so at r = 12.0 cm

We need to find the voltage V' at 2.0 cm from the edge of the sphere, so at

r' = 12.0 + 2.0 = 14.0 cm

Since the voltage is inversely proportional to r, we can use:

Vr=V'r'\\V'=\frac{Vr}{r'}=\frac{(200,000)(12.0)}{14.0}=171,429 V

This is the potential at the location of the plastic cube.

Now we can use the law of conservation of energy, which states that the initial electric potential energy of the cube is totally converted into kinetic energy when the plastic cube is at infinite distance from the generator. So we can write:

qV' = \frac{1}{2}mv^2

where:

q is the charge on the plastic cube

V' is the potential at the location of the cube

m = 5.0 g = 0.005 kg is the mass of the cube

v = 3.0 m/s is the final speed of the cube

Solving for q, we find the charge on the cube:

q=\frac{mv^2}{2V'}=\frac{(0.005)(3.0)^2}{2(171,429)}=1.3\cdot 10^{-7}C

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
2 years ago
Sophia is planning on going down an 8-m water slide. Her weight is 50 N. She knows that she has gravitational potential energy (
RideAnS [48]

Answer:

Explanation:

graph would be a straight line from (0, 0) to (400, 8)

Plot points are

PE = mgh

50(0) = 0 J

50(2) = 100 J

50(4) = 200 J

50(6) = 300 J

50(8) = 400 J

4 0
2 years ago
Other questions:
  • The picture below shows the position of Earth and two stars.
    11·2 answers
  • Describe a well-known hypothesis that was discarded because it was found to be untrue.earth-centered model of the universe. the
    6·1 answer
  • What is the resultant velocity vector when you add your swimming velocity and the current velocity? give the x and y components
    15·2 answers
  • A quarterback throws a football down the field to the receiver. What type(s) of energy does the football possess? Check all that
    11·2 answers
  • An auto moves 10 meters in the first second of travel, 15 more meters in the next second, and 20 more meters during the third se
    12·1 answer
  • A ship sailing in the Gulf Stream is heading 25.0º west of north at a speed of 4.00 m/s relative to the water. Its velocity rela
    11·1 answer
  • A transformer is to be designed to increase the 30 kV-rms output of a generator to the transmission-line voltage of 345 kV-rms.
    8·1 answer
  • Two pool balls, each moving at 2 m/s, roll toward each other and collide. Suppose after bouncing apart, each moves at 2 m/s. Thi
    8·1 answer
  • A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
    15·1 answer
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!