Answer:
C. Between North and West
Explanation:
Since all have equal masses and the red ball and green ball are moving in south and east direction, the blue ball would most likely be moving between the north and West direction.
Answer:
the expression of current in the loop enclosed to the left of the capacitor plate is

Explanation:
As we know by Ampere's law that line integral of magnetic field around a closed loop is proportional to the current enclosed in the path
So we will have

so we have

so above is the expression of current in the loop enclosed to the left of the capacitor plate
It is required an infinite work. The additional electron will never reach the origin.
In fact, assuming the additional electron is coming from the positive direction, as it approaches x=+1.00 m it will become closer and closer to the electron located at x=+1.00 m. However, the electrostatic force between the two electrons (which is repulsive) will become infinite when the second electron reaches x=+1.00 m, because the distance d between the two electrons is zero:

So, in order for the additional electron to cross this point, it is required an infinite amount of work, which is impossible.
Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .