The oxidation state of potassium ion K = +1
The oxidation state of oxygen ion O = -2
So, the oxidation state of O2 is = -2 x 2 = -4
Since, KBrO2 is neutral so,
(+1) + (x) + (-4) = Zero
-3 + X = Zero
So, X = +3
The oxidation state of individual bromine atom in KBrO2 is +3
<span>(19.55 mol Au) / ( 1 ) x (196.97 g Au) / ( 1 mol Au) =
19.55 x 196.97 =
3850.76 g Au
I hope this helps you and have a great day!! :)
</span>
I first converted the given grams of the reactants into moles, and then divided the moles by the coefficients in front of each of the reactant. The result with the smallest value will be the limiting reactant, and the value of CuO was the smallest, so it's the limiting reactant.
After figuring out which reactant is the limiting one, I took their given grams and converted it into moles, the divided it by the ratio of N2 to CuO (it's in the equation) to obtain the moles of N2, and then multiply it with the molar mass of N2 to get its mass in grams.
Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution