Answer:
No, the apple will reach 4.20041 m below the tree house.
Explanation:
t = Time taken
u = Initial velocity = 2.8 m/s
v = Final velocity = 0
s = Displacement
g = Acceleration due to gravity = -9.81 m/s² = a (negative as it is going up)
Equation of motion

The height to which the apple above the point of release will reach is 0.39959 m
From the ground the distance will be 1.3+0.39959 = 1.69959 m
Distance from the tree house = 5.9-1.69959 = 4.20041 m
No, the apple will reach 4.20041 m below the tree house.
The values in the option do not reflect the answer.
Answer:

Explanation:
The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula:
, where K represents the Coulomb constant.
Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

but modified with only one charge showing in the numerator of the expression.
<span>We can think this through intuitively. A frequency of 256 Hz means that the wave has 256 cycles each second. If the wavelength is 1.33 meters, then there are 256 of them each second. Therefore, we just need to multiply the wavelength by the frequency to find the speed of sound. (Note that the units Hz = 1 / s)
v = (frequency) x (wavelength)
v = (256 Hz) x (1.33 m)
v = 340.5 m/s
The speed of sound in the vicinity of the fork is 340.5 m/s</span>
Answer:
43.58 m
Explanation:
If you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees
Using trigonometry ratio
Sin 5 = opposite/hypothenus
Where the hypothenus = 500m
Opposite = height h
Sin 5 = h/500
Cross multiply
500 × sin 5 = h
h = 500 × 0.08715
h = 43.58m
Therefore, the height above the starting point is equal to 43.58m