answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alina [70]
2 years ago
14

A hose has been clamped so that the area at the clamp is only one quarter the area of the rest of the hose. When we ignore the v

iscosity of water, the ratio of the volume of water delivered per unit time when the clamp is on to the volume of water delivered per unit time without the clamp is_______
Physics
1 answer:
Bad White [126]2 years ago
4 0

Answer:

1

Explanation:

A hose has been clamped so that the area at the clamp is only one quarter the area of the rest of the hose. When we ignore the viscosity of water, the ratio of the volume of water delivered per unit time when the clamp is on to the volume of water delivered per unit time without the clamp is 1 as continuity says the same amount of water must flow out

You might be interested in
To measure the coefficient of kinetic friction by sliding a block down an inclined plane the block must be in equilibrium.
lozanna [386]

Answer:

a)

Explanation:

  • A block sliding down an inclined plane, is subject to two external forces along the slide.
  • One is the component of gravity (the weight) parallel to the incline.
  • If the inclined plane makes an angle θ with the horizontal, this component (projection of the downward gravity along the incline, can be written as follows:

        F_{gp} = m*g* sin \theta (1)

       (taking as positive the direction of the movement of the block)

  • The other force, is the friction force, that adopts any value needed to meet the Newton's 2nd Law.
  • When θ is so large, than the block moves downward along the incline, the friction force can be expressed as follows:

       F_{f} = \mu_{k} * N  (2)

  • The normal force, adopts the value needed to prevent any vertical movement through the surface of the incline:

       N = m*g* cos \theta (3)

  • In equilibrium, both forces, as defined in (1), (2) and (3) must be equal in magnitude, as follows:

        m*g* sin \theta =  \mu_{k} * m*g* cos \theta

  • As the block is moving, if the net force is 0, according to Newton's 2nd Law, the block must be moving at constant speed.
  • In this condition, the friction coefficient is the kinetic one (μk), which can be calculated as follows:

        \mu_{k}  = tg \theta

8 0
1 year ago
A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
Vanyuwa [196]
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight

3 0
2 years ago
Read 2 more answers
A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
vesna_86 [32]

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}

Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V

Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V

R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140

R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260

so.

V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}

4 0
2 years ago
Which is a better conductor, a flagpole or a flag? Why?
Novosadov [1.4K]

Answer:

flagpole

Explanation:

if it is about electricity then its flagpole

4 0
2 years ago
Read 2 more answers
Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder
Xelga [282]

Answer:

Incomplete question

Check attachment for the given diagram

Explanation:

Given that,

Initial Velocity of drum

u=3m/s

Distance travelled before coming to rest is 6m

Since it comes to rest, then, the final velocity is 0m/s

v=3m/s

Using equation of motion to calculate the linear acceleration or tangential acceleration

v²=u²+2as

0²=3²+2×a×6

0=9+12a

12a=-9

Then, a=-9/12

a=-0.75m/s²

The negative sign shows that the cylinder is decelerating.

Then, a=0.75m/s²

So, using the relationship between linear acceleration and angular acceleration.

a=αr

Where

a is linear acceleration

α is angular acceleration

And r is radius

α=a/r

From the diagram r=250mm=0.25m

Then,

α=0.75/0.25

α =3rad/sec²

The angular acceleration is =3rad/s²

b. Time take to come to rest

Using equation of motion

v=u+at

0=3-0.75t

0.75t=3

Then, t=3/0.75

t=4 secs

The time take to come to rest is 4s

7 0
2 years ago
Other questions:
  • A ship maneuvers to within 2500 m of an island's 1800 m high mountain peak and fires a projectile at an enemy ship 610 m on the
    5·2 answers
  • The label on the box of cleanser states that it contains ch3cooh. what elements are in this compound.
    7·1 answer
  • Blue light, which has a wavelength of about 475 nm, is made to pass through a slit of a diffraction grating that has 425 lines p
    12·2 answers
  • Determine the maximum weight of the bucket that the wire system can support so that no single wire develops a tension exceeding
    7·1 answer
  • A typical human contains 5.00 l of blood, and it takes 1.00 min for all of it to pass through the heart when the person is resti
    14·2 answers
  • A small lab cart and one of larger mass collide and rebound off each other. Which of them has the greater average force on it du
    12·1 answer
  • Assume that the cart is free to roll without friction and that the coefficient of static friction between the block and the cart
    15·2 answers
  • While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The fron
    7·1 answer
  • in a hydraulic press the small cylinder has a diameter 10.0cm while the large has 25cm if the force of 600N is applied to the sm
    8·2 answers
  • A physics teacher pushes an environmental science teacher out of a stationary helicopter without a parachute from a height of 48
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!