answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
2 years ago
13

A spring with spring constant 450 N/m is stretched by 12 cm. What distance is required to double the amount of potential energy

stored within the spring?
Physics
1 answer:
snow_lady [41]2 years ago
6 0

Answer:

<em> The distance required = 16.97 cm</em>

Explanation:

Hook's Law

From Hook's law, the potential energy stored in a stretched spring

E = 1/2ke² ......................... Equation 1

making e the subject of the equation,

e = √(2E/k)........................ Equation 2

Where E = potential Energy of the stretched spring, k = elastic constant of the spring, e = extension.

Given: k = 450 N/m, e = 12 cm = 0.12 m.

E = 1/2(450)(0.12)²

E = 225(0.12)²

E = 3.24 J.

When the potential energy is doubled,

I.e E = 2×3.24

E = 6.48 J.

Substituting into equation 2,

e = √(2×6.48/450)

e = √0.0288

e = 0.1697 m

<em>e = 16.97 cm</em>

<em>Thus the distance required = 16.97 cm</em>

You might be interested in
A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
myrzilka [38]

Answer:

a. The plane speeds up but the cargo does not change speed.

Explanation:

Just to make it clear, the question is as follows from what I understand.

A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.  You can neglect air resistance.

Just after the cargo has fallen out:

a. The plane speeds up but the cargo does not change speed.

b. The cargo slows down but the plane does not change speed.

c. Neither the cargo nor the plane change speed.

d. The plane speeds up and the cargo slows down.

e. Both the cargo and the plane speed up.

And we are requested to choose the right answer under the given conditions. We know the glider has no motor, then it must be in free fall movement, then it is experiencing some force that pulls it to the from due to the gravity effect on it, and a force in general is calculated by

F=m*a, m:= mass of the object, a:= acceleration.

Here we are only considering the horizontal effect of the forces, then since the mass is reduced the acceleration must increase to compensate and maintain  the equilibrium of the forces, then the glider being lighter can travel faster due to the acceleration. On the other hand by the time the cargo left the glider there was no acceleration and the speed it had at the moment he left the plane continues, then the cargo does not change its speed, then horizontally speaking the answer would be a. The plane speeds up but the cargo does not change speed.

5 0
1 year ago
A 5.0-kg crate is resting on a horizontal plank. The coefficient of static friction is 0.50 and the coefficient of kinetic frict
Harlamova29_29 [7]

Answer:

The mass of the crate is 5kg.

We know that the force of friction can be obtained by:

F = N*k

where k is the coefficient of friction, where we use the static one if the object is at rest, and the kinetic one if the object os moving. N is the normal force

If we tilt the base making an angle of 30° with the horizontal, now the normal force against the plank will be equal to the fraction of the weight in the direction normal to the surface of the plank.

Knowing that the angle is 30°, then the fraction of the weight that pushes against the normal is Cos(30°)*W = cos(30°)*5kg*9.8m/s^2 = 42.4N

The fraction of the force in the parallel direction to the plank (the force that would accelerate the crate downwards) is:

F = sin(30°)*5k*9,8m/s = 24.5N

now, the statical friction force is:

Fs = 42.4N*0.5 = 21.2N

The statical force is less than the 24.5N, so the crate will move downwards, then the force that acts on the crate is the kinetic force of friction:

Fk = 42.4N*0.4 = 16.96N

Then, the total force that acts on the crate is:

total force = F - Fk = 24.5N - 16.69N = 7.54N and the direction of this force points downside along the parallel direction of the plank.

3 0
2 years ago
Io, a satellite of Jupiter, is the most volcanically active moon or planet in the solar system. It has volcanoes that send plume
Mamont248 [21]

Answer:

1331.84 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity = 0

s = Displacement = 490 km

a = Acceleration

g = Acceleration due to gravity = 1.81 m/s² = a

From equation of linear motion

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -1.81\times 490000}\\\Rightarrow u=1331.84\ m/s

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km

3 0
2 years ago
Read 2 more answers
3. In 1989, Michel Menin of France walked on a tightrope suspended under a
Tamiku [17]

Answer: 80m

Explanation:

Distance of balloon to the ground is 3150m

Let the distance of Menin's pocket to the ground be x

Let the distance between Menin's pocket to the balloon be y

Hence, x=3150-y------1

Using the equation of motion,

V^2= U^s + 2gs--------2

U= initial speed is 0m/s

g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s

40m/s is contant since U (the coin is at rest is 0) hence V =40m/s

Slotting our values into equation 2

40^2= 0^2 + 2 * 10* (3150-y)

1600 = 0 + 63000 - 20y

1600 - 63000 = - 20y

-61400 = - 20y minus cancel out minus on both sides of the equation

61400 = 20y

Hence y = 61400/20

3070m

Hence, recall equation 1

x = 3150 - 3070

80m

I hope this solve the problem.

6 0
2 years ago
Joel uses a claw hammer to remove a nail from a wall. He applies a force of 40 newtons on the hammer. The hammer applies a force
jarptica [38.1K]

Hi!


Mechanical advantage is defined as the<em> ratio of force produced by an object to the force that is applied to it.</em>

In our case, this would be the ratio of the force applied by the claw hammer on the nail to the force Joel applies to the claw hammer, which is

160:40 or 4:1

So the mechanical advantage of the hammer is four.


Hope this helps!


3 0
2 years ago
Read 2 more answers
Other questions:
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • Often what one expects to see influences what is perceived in the surrounding environment. Please select the best answer from th
    5·2 answers
  • A sled sliding on a flat,icy surface with a constant velocity is best described by
    15·1 answer
  • The space shuttle is descending through the earth's atmosphere. How is the force of gravity affected?
    9·2 answers
  • The surface pressures at the bases of warm and cold columns of air are equal. air pressure in the warm column of air will ______
    11·1 answer
  • A child has a bucket full of toys: foam alphabet letters, action figures, and toy cars.
    6·2 answers
  • In this lab you will use a cart and track to explore various aspects of motion. You will measure and record the time it takes th
    8·2 answers
  • The wad of clay of mass m = 0.36 kg is initially moving with a horizontal velocity v1 = 6.0 m/s when it strikes and sticks to th
    7·1 answer
  • A quantity y is to be determined from the equation y=(px)/q^2
    15·1 answer
  • evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!